已知曲線(xiàn)G的方程為f(x,y) = 0, 曲線(xiàn)G關(guān)于直線(xiàn)y = x - 2的對(duì)稱(chēng)曲線(xiàn)

G', 那么G'的方程是

[  ]

A.f(x - 2,y) = 0     B.f(y + 2,x) = 0

C.f(y + 2,x + 2)= 0  D.f(y + 2,x - 2) = 0

答案:D
解析:

解: 如圖在x'o'y'系中, 直線(xiàn)為y' = x'新舊坐標(biāo)系的關(guān)系為

x = x' + 2, y = y' + 0

即G:f(x,y) = 0, 在x'o'y'中的方程為 f(x - 2,y) = 0  ,

G'在x'o'y'中為 f(y,x- 2) = 0, 

在原坐標(biāo)系中G'為 f(y + 2,x - 2) = 0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線(xiàn)x2+y2=1在矩陣A的變換下得到的新曲線(xiàn)方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線(xiàn)C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線(xiàn)C′1和C′2,求出曲線(xiàn)C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線(xiàn)的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-
a
2
x2+bx+c
,曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y=1
(1)求b,c的值;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)設(shè)已知函數(shù)g(x)=f(x)+2x,且g(x)在區(qū)間(-2,-1)內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
3
x3-
1
2
x2-(a+1)x-a-1
,其中a為實(shí)數(shù).
(1)已知函數(shù)g(x)=f(x)-f′(x)是奇函數(shù),直線(xiàn)l1是曲線(xiàn)f(x)的切線(xiàn),且l1⊥l2,l2:x-2y-8=0,求直線(xiàn)l1的方程;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線(xiàn)x2+y2=1在矩陣A的變換下得到的新曲線(xiàn)方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線(xiàn)C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線(xiàn)C′1和C′2,求出曲線(xiàn)C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線(xiàn)的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案