(本小題滿分12分)
已知展開式中最后三項的系數(shù)的和是方程的正數(shù)解,它的中間項是,求的值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)如果展開式中,第四項與第六項的系數(shù)相等。求,并求展開式中的常數(shù)項;
(2)求展開式中的所有的有理項。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有4名男生、5名女生,全體排成一行,問下列情形各有多少種不同的排法?
(1)甲不在中間也不在兩端;(2)甲、乙兩人必須排在兩端;
(3)男、女生分別排在一起;(4)男女相間;
(5)甲、乙、丙三人從左到右順序保持一定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用紅、黃、藍、白、黑五種顏色在田字形的四個小方格內(nèi),每格涂一種顏色,相鄰兩格涂不同的顏色,如果顏色可以反復(fù)使用。
(1)從中任選四種顏色涂色,有多少種不同的涂法?
(2)按要求任意選色涂,共有多少種不同的涂法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)若展開式中前三項系數(shù)成等差數(shù)列.
(1)求n的值;
(2)求展開式中第4項的系數(shù)和二項式系數(shù);
(3)求展開式中x的一次項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求3名男生和4名女生按下列要求排成一排的排法總數(shù)(結(jié)果用數(shù)字表示)
(1)男生甲只排中間或兩頭; (2)所有女生排在一起
(3)男生不相鄰 (4)男生甲在女生乙的左邊(可以不相鄰)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和為,,滿足
(1)計算、、、,并猜想的表達式;
(2)用數(shù)學(xué)歸納法證明你猜想的的表達式。(13分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在二項式的展開式中,若第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,
(Ⅰ)求展開式中二項式系數(shù)最大的項;
(Ⅱ)若前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項是第幾項?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當(dāng)x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22=+2n(n-1)=+(11-m)(-1)=(m-)2+.
∵m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當(dāng)x2的系數(shù)取得最小值時,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設(shè)這時f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com