已知向量,sinα),,sinβ)且,,k∈R
(1)用k表示;
(2)當(dāng)最小時,求向量與向量的夾角θ.
【答案】分析:(1)由,知(cosα+cosβ)2+(sinα+sinβ)2=3[(cosα+kcosβ)2+(sinα+ksinβ)2],所以.由及|cos(α-β)|≤1,得.由此能用k表示
(2)當(dāng)最小時,.將,,代入可得的夾角為
解答:解:(1)∵
∴(cosα+cosβ)2+(sinα+sinβ)2=3[(cosα+kcosβ)2+(sinα+ksinβ)2]
得  …(4分)
及|cos(α-β)|≤1,
,

=,…(6分)
令3k+1=t,
則t>0,
代入上式可得
當(dāng)且僅當(dāng)t=2,
時,
取“=”,…(10分)
(2)當(dāng)最小時,
 
=…(12分)
,,
代入上式,
,
的夾角為…(14分)
點評:本題考查平面向量的綜合運用,解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,
3
)
,
b
=(1,cosθ)
,θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sin
ωx
2
,1),
n
=(
3
Acos
ωx
2
,
A
2
cosωx)(A>0,ω>0)
,函數(shù)f(x)=
m
n
的最大值為6,最小正周期為π.
(1)求A,ω的值;
(2)將函數(shù)y=f(x)的圖象向左平移
π
12
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.求g(x)在[0,
6
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(
x
2
+
π
12
),  cos
x
2
)
,
b
=(cos(
x
2
+
π
12
),  -cos
x
2
)
,x∈[
π
2
,  π]
,函數(shù)f(x)=
a
b

(1)若cosx=-
3
5
,求函數(shù)f(x)的值;
(2)若函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,且x0∈(-2,-1),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)

(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,(0<θ<π)
,求θ的值;
(3)設(shè)
c
=(1,1+2sinθ)
,若f(θ)=|
a
+
c
|2+sin2θ
,求f(θ)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海二模)已知向量
m
=(sin(2x+
π
6
),sinx)
,
n
=(1,sinx),f(x)=
m
n

(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若f(
B
2
)=
2
+1
2
,b=
5
,c=
3
,求a的值.

查看答案和解析>>

同步練習(xí)冊答案