(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x
2+x.(1)解不等式:f(x)<0;(2)請(qǐng)先閱讀下列材料,然后回答問(wèn)題.
材料:已知函數(shù)g(x)=
-,問(wèn)函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說(shuō)明理由.一個(gè)同學(xué)給出了如下解答:
解:令u=-f(x)=-x
2-x,則u=-(x+
)
2+
,
當(dāng)x=-
時(shí),u有最大值,u
max=
,顯然u沒(méi)有最小值,
∴當(dāng)x=-
時(shí),g(x)有最小值4,沒(méi)有最大值.
請(qǐng)回答:上述解答是否正確?若不正確,請(qǐng)給出正確的解答;
(3)設(shè)a
n=
,請(qǐng)?zhí)岢龃藛?wèn)題的一個(gè)結(jié)論,例如:求通項(xiàng)a
n.并給出正確解答.
注意:第(3)題中所提問(wèn)題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問(wèn)題的難度分層給分,解答也相應(yīng)給分,如果同時(shí)提出兩個(gè)問(wèn)題,則就高不就低,解答也相同處理.