如圖,在空間四邊形SABC中,SA^平面ABC,ÐABC90°,AN^SBN,AM^SCM.求證:①AN^BC;SC^平面ANM

答案:
解析:


提示:

  ①要證AN^BC,轉(zhuǎn)證,BC^平面SAB.

  ②要證SC^平面ANM,轉(zhuǎn)證,SC垂直于平面ANM內(nèi)的兩條相交直線,即證SC^AMSC^AN.要證SC^AN,轉(zhuǎn)證AN^平面SBC,就可以了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點(diǎn).
(1)求證:平面ABE⊥平面BCD;
(2)若F是AB的中點(diǎn),BC=AD,且AB=8,AE=10,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間四邊形ABCD中,M,N分別是線段AB,AD上的點(diǎn),若
AM
MB
=
AN
ND
,P為線段CD上的一點(diǎn)(P與D不重合),過M,N,P的平面交平面BCD于Q,求證:BD∥PQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知:如圖,在空間四邊形ABCD中,AB⊥CD且AC⊥BD,求證:AD⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間四邊形OABC中,已知E是線段BC的中點(diǎn),G為AE的中點(diǎn),若
OA
,
OB
,
OC
分別記為
a
,
b
c
,則用
a
,
b
c
表示
OG
的結(jié)果為
OG
=
1
2
a
+
1
4
b
+
1
4
c
1
2
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在空間四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).
(1)若AB=BC=CD=AD=AC=BD=2a,求EF的長;
(2)若AD=BC=2a,EF=
3
a
,求異面直線AD與BC所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案