【題目】已知f(x)sin(2x).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值,并寫出取最大值時自變量x的集合;
(3)求函數(shù)f(x)在x∈[0,]上的最值.
【答案】(1)最小正周期為(2)x∈{x|x=kπ,k∈Z},f(x)取到最大值(3)f(x)的最小值為,最大值為
【解析】
(1)根據(jù)周期與解析式的關(guān)系,即可求解;
(2)由正弦函數(shù)的最值與自變量關(guān)系,即可得結(jié)果;
(3)根據(jù)整體思想,轉(zhuǎn)化為求正弦函數(shù)的最值.
(1)周期為T;
(2)當(dāng)2x2kπ,k∈Z,
即x∈{x|x=kπ,k∈Z},f(x)取到最大值;
(3)x∈[0,]時,2x∈[],
根據(jù)正弦函數(shù)的性質(zhì)f(x)∈[,],
當(dāng)x時,f(x)取到最小值,
當(dāng)x時,f(x)取到最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,在不考慮其他因素的條件下,某段下水道的排水量V(單位:立方米/小時)是垃圾雜物密度x(單位:千克/立方米)的函數(shù)。當(dāng)下水道的垃圾雜物密度達(dá)到3千克/立方米時,會造成堵塞,此時排水量為0;當(dāng)垃圾雜物密度不超過0.5千克/立方米時,排水量是80立方米/小時。研究表明,當(dāng)時,排水量V是垃圾雜物密度x的一次函數(shù).
(1)當(dāng)時,求函數(shù)的解析式;
(2)當(dāng)垃圾雜物密度x為多大時,垃圾雜物量(單位時間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時)可以達(dá)到最大?求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,集合.
(1)若“”是“”的必要條件,求實數(shù)的取值范圍;
(2)若中只有一個整數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】青島二中有羽毛球社乒乓球社和籃球社,三個社團的人數(shù)分別為27,9,18,現(xiàn)采用分層抽樣的方法從這三個社團中抽取6人參加活動.
(1)求應(yīng)從這三個社團中分別抽取的學(xué)生人數(shù);
(2)將抽取的6名學(xué)生進(jìn)行編號,編號分別為,,,,,,從這6名學(xué)生中隨機抽出2名參加體育測試.
①用所給的編號列出所有可能的結(jié)果;
②設(shè)事件是“編號為,的兩名學(xué)生至少有一人被抽到”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點A(2,0),B(0,4),且AC=BC,則△ABC的歐拉線的方程為( )
A.x+2y+3=0B.2x+y+3=0C.x﹣2y+3=0D.2x﹣y+3=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在古代三國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個全等的直角三角形圍成一個大正方形,中間空出一個小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a。現(xiàn)向大正方形區(qū)城內(nèi)隨機投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;
(3)若函數(shù),是否存在實數(shù),使函數(shù)在上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com