15.等差數(shù)列{an}中,Sn為它的前n項(xiàng)和,且S10<S11,S11>S12,則:①此數(shù)列的公差d<0; ②S12一定大于S7; ③a11是各項(xiàng)中最大的一項(xiàng); ④S11一定是Sn的最大項(xiàng),其中正確命題的序號(hào)是①②④.

分析 對(duì)于命題①,由已知條件得到a11>0,a12<0再由d=a12-a11判斷;
對(duì)于命題②,S12與S7作差后由等差數(shù)列的性質(zhì)轉(zhuǎn)化為含a10的代數(shù)式判斷;
對(duì)于命題③,直接由首項(xiàng)和a11作差判斷;
對(duì)于命題④,利用11項(xiàng)大于0,從第12項(xiàng)起小于0判斷.

解答 解:∵S10<S11,∴a11=S11-S10>0,
∵S11>S12,∴a12=S12-S11<0,
∵a11>0,a12<0,∴d=a12-a11<0,命題①正確;
S12-S7=a8+a9+a10+a11+a12=5a10>0,∴S12>S7,命題②正確;
∵a1-a11=-10d>0,命題③不正確;
該數(shù)列前11項(xiàng)為正值,即前11項(xiàng)的和最大,命題④正確.
∴正確的命題為①②④.
故答案為:①②④.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì),考查了命題真假的判斷,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)P是雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與圓C2:x2+y2=a2+b2的一個(gè)交點(diǎn),且∠PF1F2=60°,其中F1、F2分別為雙曲線C1的左、右焦點(diǎn),則雙曲線C1的離心率為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線2x+y+7=0的傾斜角為( 。
A.銳角B.直角C.鈍角D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)某總體是由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第3列和第4列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)是11.
7816 6572 0802 6316 0702 4369 9728 1198
3204 9234 4935 8200 3623 4869 6938 7481.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.計(jì)算下列各式的值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)${\;}^{\frac{1}{2}}$+(0.2)-2×$\frac{3}{25}$;
(2)$-5{log_9}4+{log_3}\frac{32}{9}-{5^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•\overrightarrow b=1$,若$\overrightarrow a-\overrightarrow c$與$\overrightarrow b-\overrightarrow c$的夾角為60°,則$|{\overrightarrow c}|$的最大值為$\sqrt{3}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)$f(x)=\frac{lnx}{x}-{x^2}+2ex-k$有且只有一個(gè)零點(diǎn),則k的值為(  )
A.$e+\frac{1}{e^2}$B.$e+\frac{1}{e}$C.${e^2}+\frac{1}{e^2}$D.${e^2}+\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知直線l的斜率為$-\frac{{\sqrt{3}}}{3}$,則該直線l的傾斜角為( 。
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知△ABC中,$\overrightarrow{BD}$=λ$\overrightarrow{BC}$(0<λ<1),cosC=$\frac{3}{5}$,cos∠ADC=$\frac{\sqrt{2}}{10}$.
(I)若AC=5.BC=7,求AB的大;
(Ⅱ)若AC=7,BD=10,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案