已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.

(1)若,,求數(shù)列的前項(xiàng)和;

(2)若存在正整數(shù),使得.試比較的大小,并說明理由.

 

【答案】

(1)

(2)當(dāng)時,;當(dāng)時,;當(dāng)時,

【解析】

試題分析:解:(1)依題意,,

,

所以,                  3分

,            ①

,②

②得,

,

所以.          7分

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081012273153661016/SYS201308101228006109176613_DA.files/image017.png">,

所以,即,

,

,                                                 9分

所以

11分

(。┊(dāng)時,由

,                                           13分

(ⅱ)當(dāng)時,由

綜上所述,當(dāng)時,;當(dāng)時,;當(dāng)時,

16分

(注:僅給出“時,;時,”得2分.)

考點(diǎn):數(shù)列的求和

點(diǎn)評:主要是考查了等比數(shù)列的求和公司以及數(shù)列的單調(diào)性的運(yùn)用,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知數(shù)列是首項(xiàng)為1公差為正的等差數(shù)列,數(shù)列是首項(xiàng)為1的等比數(shù)列,設(shè),且數(shù)列的前三項(xiàng)依次為1,4,12,

(1)求數(shù)列、的通項(xiàng)公式;

(2)若等差數(shù)列的前n項(xiàng)和為Sn,求數(shù)列的前項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年寧夏銀川一中高二上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且公差不為零,而等比數(shù)列的前三項(xiàng)分別是。
(1)求數(shù)列的通項(xiàng)公式
(2) )若,求正整數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆黑龍江省哈九中高三上學(xué)期12月月考理科數(shù)學(xué)卷 題型:解答題

(10分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且,若成等比數(shù)列,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省日照市高三12月校際聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列的前n項(xiàng)和

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè), 求數(shù)列的前n項(xiàng)和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

    已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且, 若

   成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和

 

查看答案和解析>>

同步練習(xí)冊答案