已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
(1)若,,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得.試比較與的大小,并說明理由.
(1)
(2)當(dāng)時,;當(dāng)時,;當(dāng)時,.
【解析】
試題分析:解:(1)依題意,,
故,
所以, 3分
令, ①
則,②
①②得,,
,
所以. 7分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081012273153661016/SYS201308101228006109176613_DA.files/image017.png">,
所以,即,
故,
又, 9分
所以
11分
(。┊(dāng)時,由知
, 13分
(ⅱ)當(dāng)時,由知
,
綜上所述,當(dāng)時,;當(dāng)時,;當(dāng)時,.
16分
(注:僅給出“時,;時,”得2分.)
考點(diǎn):數(shù)列的求和
點(diǎn)評:主要是考查了等比數(shù)列的求和公司以及數(shù)列的單調(diào)性的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知數(shù)列是首項(xiàng)為1公差為正的等差數(shù)列,數(shù)列是首項(xiàng)為1的等比數(shù)列,設(shè),且數(shù)列的前三項(xiàng)依次為1,4,12,
(1)求數(shù)列、的通項(xiàng)公式;
(2)若等差數(shù)列的前n項(xiàng)和為Sn,求數(shù)列的前項(xiàng)的和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年寧夏銀川一中高二上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且公差不為零,而等比數(shù)列的前三項(xiàng)分別是。
(1)求數(shù)列的通項(xiàng)公式
(2) )若,求正整數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆黑龍江省哈九中高三上學(xué)期12月月考理科數(shù)學(xué)卷 題型:解答題
(10分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且,若成等比數(shù)列,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省日照市高三12月校際聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列的前n項(xiàng)和.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè), 求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且, 若
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com