在R上定義的連續(xù)偶函數(shù)f(x)滿足f(x)=f(2-x),在區(qū)間[1,2]上單調(diào),且f(0)•f(1)<0,則函數(shù)f(x)在區(qū)間[0,2 010]上的零點的個數(shù)是
 
分析:利用函數(shù)的奇偶性、單調(diào)性、周期性、函數(shù)零點的判定定理即可得出.
解答:解:由題意可得f(-x)=f(x)=f(2-x),∴f(x)是以2為周期的函數(shù),且其圖象關于直線x=1對稱.

∵f(0)•f(1)<0,∴函數(shù)f(x)在區(qū)間(0,1)上存在零點;

∵f(x)在區(qū)間[1,2]上單調(diào),∴在區(qū)間(0,1)上也單調(diào),因此函數(shù)f(x)在區(qū)間(0,1)上存在唯一零點.

綜上可知:函數(shù)f(x)在區(qū)間[0,2]上有且僅有兩個零點;

又f(x)是以2為周期的函數(shù),函數(shù)f(x)在區(qū)間[0,2 010]上的零點的個數(shù)是2010.

故答案為2010.
點評:熟練掌握函數(shù)的奇偶性、單調(diào)性、周期性、函數(shù)零點的判定定理是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)在區(qū)間[4,5]上是
(填增.減)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),則f(x)是周期為( 。┑闹芷诤瘮(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)在區(qū)間[-2,-1]上是(  )函數(shù),在區(qū)間[3,4]上是( 。┖瘮(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在R上定義的連續(xù)偶函數(shù)f(x)滿足f(x)=f(2-x),在區(qū)間[1,2]上單調(diào),且f(0)•f(1)<0,則函數(shù)f(x)在區(qū)間[0,2 010]上的零點的個數(shù)是________.

查看答案和解析>>

同步練習冊答案