對于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)設f(x)=ln(1+x)-mx,試探究函數(shù)f(x)與函數(shù)(0,+∞)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
【答案】分析:(Ⅰ)f′(x)=ex(ax+1+a),當a>0時,f′(x)>0?函數(shù)f(x)在區(qū)間(-1-,+∞)上是增函數(shù),在區(qū)間(-∞,-1-)上是減函數(shù);a=0時,f′(x)>0,函數(shù)f(x)是區(qū)間(-∞,+∞)上的增函數(shù);當a<0時,f′(x)>0?ax>-a-1,函數(shù)f(x)在區(qū)間(-∞,-1-)上是增函數(shù),在區(qū)間(-1-,+∞)上是減函數(shù).
(Ⅱ)若存在,則ex(x+1)≥kx+m≥-x2+2x+1恒成立,令x=0,得m=1,因此x2+(k-2)x≥0恒成立,由此及彼能推導出函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1存在“分界線”.
解答:解:(Ⅰ)f′(x)=ex(ax+1+a),(2分)
當a>0時,f′(x)>0?ax>-a-1,即x>-1-,
函數(shù)f(x)在區(qū)間(-1-,+∞)上是增函數(shù),
在區(qū)間(-∞,-1-)上是減函數(shù);(3分)
當a=0時,f′(x)>0,函數(shù)f(x)是區(qū)間(-∞,+∞)上的增函數(shù);(5分)
當a<0時,f′(x)>0?ax>-a-1,即x<-1-,
函數(shù)f(x)在區(qū)間(-∞,-1-)上是增函數(shù),在區(qū)間(-1-,+∞)上是減函數(shù).(7分)
(Ⅱ)若存在,則ex(x+1)≥kx+m≥-x2+2x+1恒成立,
令x=0,則1≥m≥1,
所以m=1,(9分)
因此:kx+1≥-x2+2x+1恒成立,即x2+(k-2)x≥0恒成立,
由△≤0得到:k=2,
現(xiàn)在只要判斷ex(x+1)≥2x+1是否恒成立,(11分)
設∅(x)=ex(x+1)-(2x+1),
因為:∅′(x)=ex(x+2)-2,
當x>0時,ex>1,x+2>2,∅′(x)>0,
當x<0時,ex(x+2)<2ex<2,∅′(x)<0,
所以∅(x)≥∅(0)=0,即ex(x+1)≥2x+1恒成立,
所以函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1存在“分界線”.(14分)
點評:本題考查導數(shù)在函數(shù)單調性中的運用,解題時要注意導數(shù)公式的靈活運用,合理地運用導數(shù)的性質解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)設a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)和g(x),設α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α-β|≤1,則稱f(x)與g(x)互為“零點關聯(lián)函數(shù)”.若函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關聯(lián)函數(shù)”,則實數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)當a=1時,求函數(shù)h(x)的極值;
(2)若函數(shù)h(x)有兩個極值點,求實數(shù)a的取值范圍;
(3)定義:對于函數(shù)F(x)和G(x),若存在直線?:y=kx+b,使得對于函數(shù)F(x)和G(x)各自定義域內的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,則稱直線?:y=kx+b為函數(shù)F(x)和G(x)的“隔離直線”.則當a=1時,函數(shù)f(x)和g(x)是否存在“隔離直線”.若存在,求出所有的“隔離直線”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線
y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)設a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna其中a為常數(shù),e=2.718K,函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標軸交點處的切線分別為l1,l2,且l1∥l2
(Ⅰ)求常數(shù)a的值及l(fā)1,l2的方程;
(Ⅱ)求證:對于函數(shù)f(x)和g(x)公共定義域內的任意實數(shù)x,有|f(x)-g(x)|>2;
(Ⅲ)若存在x使不等式
x-m
f(x)
x
成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案