已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線的斜率為
3
,離心率為e,則
a2+e
b
的最小值為
 
分析:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線的斜率為
3
,可得
b
a
=
3
,利用離心率為e=
c
a
=
1+
b2
a2
即可得出e,于是
a2+e
b
=
a2+2
3
a
,利用基本不等式即可得出.
解答:解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線的斜率為
3
,∴
b
a
=
3

∴離心率為e=
c
a
=
1+
b2
a2
=
1+(
3
)2
=2.
a2+e
b
=
a2+2
3
a
=
3
3
(a+
2
a
)
3
3
×2
a•
2
a
=
2
6
3
,當(dāng)且僅當(dāng)a=
2
時(shí)取等號.
a2+e
b
的最小值為
2
6
3

故答案為
2
6
3
點(diǎn)評:本題考查了雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、基本不等式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(diǎn)
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案