8.在△ABC中,a=2$\sqrt{3}$,b=2,c=4,則$\frac{a+b+c}{sinA+sinB+sinC}$=4.

分析 由已知利用余弦定理可求cosB的值,利用同角三角函數(shù)基本關(guān)系式可求sinB的值,由比例的性質(zhì)即可得解.

解答 解:∵a=2$\sqrt{3}$,b=2,c=4,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{12+16-4}{2×2\sqrt{3}×4}$=$\frac{\sqrt{3}}{2}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{1}{2}$,
∴$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{sinB}$=$\frac{2}{\frac{1}{2}}$=4.
故答案為:4.

點(diǎn)評 本題主要考查了余弦定理,同角三角函數(shù)基本關(guān)系式以及比例的性質(zhì)的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在直角梯形ABCD中,∠DAB=∠CBA=90°,∠DCB=60°,AD=1,AB=$\sqrt{3}$,在直角梯形內(nèi)挖去一個以A為圓心,以AD為半徑的四分之一圓,得到圖中陰影部分,求圖中陰影部分繞直線AB旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積、表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平行四邊形ABCD中,∠BAD=60°,AB=4,AD=2,E,F(xiàn)分別是BC,CD邊的中點(diǎn),則|$\overrightarrow{AE}$+$\overrightarrow{AF}$|=$3\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著人們經(jīng)濟(jì)收入的不斷增長,個人購買家庭轎車已不再是一種時尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司作了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如表的數(shù)據(jù)資料:
使用年限x23456
總費(fèi)用y2.23.85.56.57.0
(1)在給出的坐標(biāo)系中做出散點(diǎn)圖;
(2)求線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的$\widehat{a}$、$\widehat$;
(3)估計使用年限為12年時,車的使用總費(fèi)用是多少?
(最小二乘法求線性回歸方程系數(shù)公式$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{f(x+1),}&{x≤2}\\{{3^x},}&{x>2}\end{array}}$,則f(0)的值為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正項(xiàng)等比數(shù)列{an}中的a1、a11是函數(shù)f(x)=$\frac{1}{3}$x3-4x2+6x-3的極值點(diǎn),則log${\;}_{\sqrt{6}}}$a5a6=( 。
A.1B.2C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)是奇函數(shù),且有三個零點(diǎn)x1、x2、x3,則x1+x2+x3的值為(  )
A.-1B.不確定C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.長方體ABCD-A1B1C1D1被挖去一個四棱錐后如圖所示.已知AB=5,BC=4,BB=3.
(1)請補(bǔ)全此圖的三視圖;
 (2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow a,\overrightarrow b$是夾角為60°的兩個單位向量,則當(dāng)實(shí)數(shù)t∈[-1,1],$|\overrightarrow a+t\overrightarrow b|$的最大值為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案