如圖,已知平行六面體ABCDA1B1C1D1的底面是菱形且∠C1CB=∠C1CD=∠BCD=60°,

 (1)證明  C1CBD

(2)假定CD=2,CC1=,記面C1BDα,面CBDβ,求二面角αBDβ的平面角的余弦值;

 (3)當(dāng)的值為多少時,可使A1C⊥面C1BD

(1)證明  連結(jié)A1C1、AC,ACBD交于點(diǎn)O,連結(jié)C1O,

∵四邊形ABCD是菱形,∴ACBD,BC=CD

又∵∠BCC1=∠DCC1,C1C是公共邊,∴△C1BC≌△C1DC,∴C1B=C1D

DO=OB,∴C1OBD,但ACBDACC1O=O

BD⊥平面AC1,又C1C平面AC1,∴C1CBD 

 (2)解  由(1)知ACBD,C1OBD

∴∠C1OC是二面角αBDβ的平面角 

在△C1BC中,BC=2,C1C=,∠BCC1=60°,

C1B2=22+()2-2×2××cos60°= 

∵∠OCB=30°,∴OB=,BC=1,C1O=,即C1O=C1C 

C1HOC,垂足為H,則HOC中點(diǎn)且OH=,∴cosC1OC=

(3)解  由(1)知BD⊥平面AC1,∵A1O平面AC1,∴BDA1C,當(dāng)=1時,平行六面體的六個面是全等的菱形,同理可證BC1A1C,又∵BDBC1=B,∴A1C⊥平面C1BD 


解析:

見詳解

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且
OA
=
a
OC
=
b
,
OO1
=
c
,則用
a
,
b
,
c
表示向量
OG
為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1(底面是平行四邊形的四棱柱)
①求證:平面AB1D1∥平面BDC1
②若平行六面體ABCD-A1B1C1D1各棱長相等且AB⊥平面BCC1B1,E為CD的中點(diǎn),AC1∩BD1=0,求證:OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1的底面為正方形,O1,O分別為上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求證:面O1DC⊥面ABCD;
(2)若∠A1AB=60°,求二面角C-AA1-B大小;
(3)若點(diǎn)E,F(xiàn)分別在棱AA1,BC上,且AE=2EA1,問點(diǎn)F在何處時,EF⊥AD.

查看答案和解析>>

同步練習(xí)冊答案