設(shè)橢圓C:的離心率e=,右焦點(diǎn)到直線的距離,O為坐標(biāo)原點(diǎn),
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點(diǎn),證明:點(diǎn)O到直線AB的距離為定值,并求弦AB長度的最小值。
解:(Ⅰ)由,即a=2c,∴
由右焦點(diǎn)到直線的距離為,得:,解得,
所以橢圓C的方程為。
(Ⅱ)設(shè),直線AB的方程為y=kx+m,
與橢圓聯(lián)立消去y得,
,
∵OA⊥OB,∴,

,
,整理得,
所以O(shè)到直線AB的距離,
∵OA⊥OB,
,當(dāng)且僅當(dāng)OA=OB時取“=”號。
,
,即弦AB的長度的最小值是。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三高考模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

若橢圓C:的離心率e為, 且橢圓C的一個焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.

(1) 求橢圓C的方程;

(2) 設(shè)點(diǎn)M(2,0), 點(diǎn)Q是橢圓上一點(diǎn), 當(dāng)|MQ|最小時, 試求點(diǎn)Q的坐標(biāo);

(3) 設(shè)P(m,0)為橢圓C長軸(含端點(diǎn))上的一個動點(diǎn), 過P點(diǎn)斜率為k的直線l交橢圓與

A,B兩點(diǎn), 若|PA|2+|PB|2的值僅依賴于k而與m無關(guān), 求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若橢圓C:數(shù)學(xué)公式的離心率e為數(shù)學(xué)公式,且橢圓C的一個焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(2,0),點(diǎn)Q是橢圓上一點(diǎn),當(dāng)|MQ|最小時,試求點(diǎn)Q的坐標(biāo);
(3)設(shè)P(m,0)為橢圓C長軸(含端點(diǎn))上的一個動點(diǎn),過P點(diǎn)斜率為k的直線l交橢圓與A,B兩點(diǎn),若|PA|2+|PB|2的值僅依賴于k而與m無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 月考題 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4。
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x0,y0)關(guān)于直線y=2x的對稱點(diǎn)為P1 (x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):8.6 橢圓(1)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動點(diǎn)P(x,,y)關(guān)于直線y=2x的對稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案