19.已知函數(shù)f(x)=3x$-\frac{1}{{3}^{x}}$,函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)+2(x≥0)}\\{f(-x)+2(x<0)}\end{array}\right.$,則函數(shù)g(x)的最小值為(  )
A.0B.$\frac{3}{2}$C.2D.4

分析 分段求出函數(shù)的最值,再比較即可.,

解答 解:當(dāng)x≥0時(shí),g(x)=3x$-\frac{1}{{3}^{x}}$+2,此時(shí)函數(shù)為增函數(shù),故g(x)min=f(0)=1-1+2=2,
當(dāng)x<0時(shí)嗎,g(x)=$\frac{1}{{3}^{x}}$-3x+2,此時(shí)函數(shù)為減函數(shù),故g(x)>f(0)=1-1+2=2,
綜上所述函數(shù)g(x)的最小值2,
故選:C

點(diǎn)評(píng) 本題考查了函數(shù)的最值和和分段函數(shù)的問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若S6=36,Sn=324,Sn-6=144(n>6),則n等于(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)命題p:f(x)=$\frac{1}{x-m}$在區(qū)間(-4,+∞)上是減函數(shù);命題q:關(guān)于x的不等式x2-(m+1)x+$\frac{m+7}{4}$≤0在(-∞,+∞)上有解.若(¬p)∧q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(文科)底面ABCD是菱形,∠BAD=60°,AB=2,PD=$\sqrt{6}$,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱錐P-EAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(1,e),其中e是橢圓C1的離心率,以原點(diǎn)O為圓心,以橢圓C1的長(zhǎng)軸長(zhǎng)為直徑的圓C2與直線x-y+2=0相切.
(Ⅰ)求橢圓C1和圓C2的方程;
(Ⅱ)過(guò)橢圓C1的右焦點(diǎn)F的直線l1與橢圓C1交于點(diǎn)A,B,過(guò)F且與直線l1垂直的直線l2與圓C2交于點(diǎn)C,D,以A,B,C,D為頂點(diǎn)的四邊形的面積記為S,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A中含有三個(gè)元素0,-1,x,且x2∈A,則實(shí)數(shù)x的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.集合A={x|-1<x<2},則集合A∩Z的真子集個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知非空集合A、B,A={x|log${\;}_{\frac{1}{5}}$(x2-2x-3)>x2-2x-9},A⊆B,則集合B可以是( 。
A.(-1,0)∪(4,6)B.(-2,-1)∪(3,4)C.(-3,3)D.(-3,-1)∪(4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≤6\\ x-3y≤-2\\ x≥1\end{array}\right.$,則目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,則$\frac{1}{a^2}$+$\frac{1}{b^2}$的最小值為( 。
A.$\frac{1}{2}$B.2C.8D.17

查看答案和解析>>

同步練習(xí)冊(cè)答案