(2013•湖北)設(shè)a>0,b>0,已知函數(shù)f(x)=
ax+b
x+1

(Ⅰ)當(dāng)a≠b時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)x>0時(shí),稱(chēng)f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(i)判斷f(1),f(
b
a
),f(
b
a
)是否成等比數(shù)列,并證明f(
b
a
)≤f(
b
a
);
(ii)a、b的幾何平均數(shù)記為G.稱(chēng)
2ab
a+b
為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.
分析:(Ⅰ)確定函數(shù)的定義域,利用導(dǎo)數(shù)的正負(fù),結(jié)合分類(lèi)討論,即可求得數(shù)f(x)的單調(diào)性;
(Ⅱ)(i)利用函數(shù)解析式,求出f(1),f(
b
a
),f(
b
a
),根據(jù)等比數(shù)列的定義,即可得到結(jié)論;
(ii)利用定義,結(jié)合函數(shù)的單調(diào)性,即可確定x的取值范圍.
解答:解:(Ⅰ)函數(shù)的定義域?yàn)閧x|x≠-1},f′(x)=
a-b
(x+1)2

∴當(dāng)a>b>0時(shí),f′(x)>0,函數(shù)f(x)在(-∞,-1),(-1,+∞)上單調(diào)遞增;
當(dāng)0<a<b時(shí),f′(x)<0,函數(shù)f(x)在(-∞,-1),(-1,+∞)上單調(diào)遞減.
(Ⅱ)(i)計(jì)算得f(1)=
a+b
2
,f(
b
a
)=
ab
,f(
b
a
)=
2ab
a+b

(
ab
)2=
a+b
2
×
2ab
a+b

∴f(1),f(
b
a
),f(
b
a
)成等比數(shù)列,
∵a>0,b>0,∴
2ab
a+b
ab

∴f(
b
a
)≤f(
b
a
);
(ii)由(i)知f(
b
a
)=
2ab
a+b
,f(
b
a
)=
ab
,
故由H≤f(x)≤G,得f(
b
a
)≤f(x)≤f(
b
a
).
當(dāng)a=b時(shí),f(
b
a
)=f(x)=f(
b
a
)=f(1)=a,此時(shí)x的取值范圍是(0,+∞),
當(dāng)a>b時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞增,這時(shí)有
b
a
≤x≤
b
a
,即x的取值范圍為
b
a
≤x≤
b
a
;
當(dāng)a<b時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞減,這時(shí)有
b
a
≤x≤
b
a
,即x的取值范圍為
b
a
≤x≤
b
a
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查等比數(shù)列,考查分類(lèi)討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A(yíng),B的點(diǎn),直線(xiàn)PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn).
(Ⅰ)記平面BEF與平面ABC的交線(xiàn)為l,試判斷直線(xiàn)l與平面PAC的位置關(guān)系,并加以證明;
(Ⅱ)設(shè)(Ⅰ)中的直線(xiàn)l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿(mǎn)足
DQ
=
1
2
CP
.記直線(xiàn)PQ與平面ABC所成的角為θ,異面直線(xiàn)PQ與EF所成的角為α,二面角E-l-C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)設(shè)x,y,z∈R,且滿(mǎn)足:x2+y2+z2=1,x+2y+3z=
14
,則x+y+z=
3
14
7
3
14
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)設(shè)n是正整數(shù),r為正有理數(shù).
(Ⅰ)求函數(shù)f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;
(Ⅱ)證明:
nr+1-(n-1)r+1
r+1
nr
(n+1)r+1-nr+1
r+1
;
(Ⅲ)設(shè)x∈R,記[x]為不小于x的最小整數(shù),例如[2]=2,[π]=4,[-
3
2
]=-1
.令S=
381
+
382
+
383
+…+
3125
,求[S]
的值.
(參考數(shù)據(jù):80
4
3
≈344.7,81
4
3
≈350.5,124
4
3
≈618.3,126
4
3
≈631.7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)i為虛數(shù)單位,設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),若z1=2-3i,則z2=
-2+3i
-2+3i

查看答案和解析>>

同步練習(xí)冊(cè)答案