判斷函數(shù)y=(x2+1)在(-∞,0)上的增減性.

答案:
解析:

設(shè)x1x20,f(x1)f(x2)= (x12+1)(x22+1)

x1x20,x12x220

而函數(shù)y=x在(0,+∞)上是減函數(shù).

(x12+1)<(x22+1)

f(x1)f(x2)

y=(x2+1)在(-0)上是增函數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)函數(shù)y=x+
a
x
(a是常數(shù),且a>0)
有如下性質(zhì):①函數(shù)是奇函數(shù);②函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)的值域是[6,+∞),求b的值;
(2)判斷函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內(nèi)的奇偶性和單調(diào)性,并加以證明;
(3)對(duì)函數(shù)y=x+
a
x
和y=x2+
c
x2
(常數(shù)c>0)分別作出推廣,使它們是你推廣的函數(shù)的特例.判斷推廣后的函數(shù)的單調(diào)性(只需寫(xiě)出結(jié)論,不要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)y=
x2-1
在定義域上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科)函數(shù)y=x+
a
x
(a是常數(shù),且a>0)
有如下性質(zhì):①函數(shù)是奇函數(shù);②函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)的值域是[6,+∞),求b的值;
(2)判斷函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內(nèi)的奇偶性和單調(diào)性,并加以證明;
(3)對(duì)函數(shù)y=x+
a
x
和y=x2+
c
x2
(常數(shù)c>0)分別作出推廣,使它們是你推廣的函數(shù)的特例.判斷推廣后的函數(shù)的單調(diào)性(只需寫(xiě)出結(jié)論,不要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

判斷函數(shù)y=|x2-4|-a-1的零點(diǎn)個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)y=f(x)(x∈D)滿(mǎn)足:

①f(x)在D上是單調(diào)函數(shù);

②存在閉區(qū)間[a,b]?D,使f(x)在區(qū)間[a,b]上的值域也是[a,b].

那么就稱(chēng)函數(shù)y=f(x)為閉函數(shù).

試判斷函數(shù)y=x2+2x〔x∈[-1,+∞)〕是否為閉函數(shù),如果是閉函數(shù),那么求出符合條件的區(qū)間[a,b];如果不是閉函數(shù),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案