18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點(diǎn),且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.
分析:要證明CE⊥平面ADE,需要證明CE垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDE⊥平面ABCD,而E是以CD為直徑的半圓周上一點(diǎn),能夠得到CE⊥DE,由面面垂直的性質(zhì)即可證明.
解答:證明:平面ABCD⊥平面CDE,ABCD為矩形,所以AD⊥平面CDE,
因?yàn)辄c(diǎn)E在直徑為CD的半圓上,所以CE⊥ED,
所以CE⊥平面ADE.
點(diǎn)評(píng):本題考查線面垂直的證明,證明直線垂直于平面有兩種常用方法:判定定理或者使用面面垂直的性質(zhì)定理,要根據(jù)題目中給定的條件恰當(dāng)選擇.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知ABCD是邊長(zhǎng)為a的正方形,E,F(xiàn)分別是AB,AD的中點(diǎn),CG⊥面ABCD,CG=a.
(1)求證:BD∥EFG;
(2)求點(diǎn)B到面GEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是底角為30°的等腰梯形,AD=2
3
,BC=4
3
,取兩腰中點(diǎn)M、N分別交對(duì)角線BD、AC于G、H,則
AG
AC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是邊長(zhǎng)為1的正方形,AF⊥平面ABCD,CE∥AF,CE=λAF(λ>1).
(Ⅰ)證明:BD⊥EF;
(Ⅱ)若AF=1,且直線BE與平面ACE所成角的正弦值為
3
2
10
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是矩形,PD⊥平面ABCD,PB=2,PB與平面ABCD所成的角為30°,PB與平面PCD所成的角為45°,求:
(1)PB與CD所成角的大;
(2)二面角C-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求證:平面AEC⊥平面AFC;
(Ⅱ)求直線EC與平面BCF所成的角;
(Ⅲ)問在EF上是否存在一點(diǎn)M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案