(本小題滿分12分)
已知函數(shù)f(x)=x2+(2+lga)x+lgb,f(-1)=-2.
(1)求a與b的關系式;
(2)若f(x)≥2x恒成立,求a、b的值.

(1) a=10b;(2) a=100,b=10..

解析試題分析:(1)利用f(-1)=-2直接可得到lgb-lga=-1,從而得到a=10b.
(2)x2+xlga+lgb≥0對于任意x∈R恒成立,利用判別式及f(-1)=-2,即可求得a,b的值。
(1)∴l(xiāng)gb-lga=-1,即lgb=lga-1.a=10b
(2)又∵f(x)=x2+2x+xlga+lgb≥2x恒成立,∴x2+xlga+lgb≥0恒成立.
∴Δ=(lga)2-4lgb≤0.又lgb=lga-1,∴(lga-2)2≤0.∴l(xiāng)ga-2=0.
∴l(xiāng)ga=2,即a=100,b=10..
考點:函數(shù)恒成立問題,一元二次不等式的解法,函數(shù)的性質(zhì)及其應用.
點評:本題的題型是函數(shù)恒成立問題,以此為載體主要考查不等式的解法,及學生分析解決問題的能力,因此我們必須提高解不等式的本領才能從容應對解決此類問題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
我市有甲、乙兩家乒乓球俱樂部,兩家設備和服務都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設在甲家租一張球臺開展活動小時的收費為,在乙家租一張球臺開展活動小時的收費為,試求。
(2)問:小張選擇哪家比較合算?說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)已知函數(shù),
(1)若,且的取值范圍
(2)當時,恒成立,且的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同時滿足條件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元;當用水超過4噸時,超過部分每噸3.00元。某月甲、乙兩戶共交水費元,已知甲、乙兩戶該月用水量分別為噸和噸。
(1)求關于的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若
(2)若函數(shù)的圖像上有與軸平行的切線,求的取值范圍。
(3)若函數(shù)
的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分) 計算下列各式的值:
(1) ;
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在區(qū)間上的最大值為,最小值為。
(1)求
(2)作出的圖像,并分別指出的最小值和的最大值各為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),若 

(1)求函數(shù)的解析式;
(2)畫出函數(shù)的圖象,并說出函數(shù)的單調(diào)區(qū)間;
(3)若,求相應的值.

查看答案和解析>>

同步練習冊答案