設(shè)A1、A2是橢圓=1的長(zhǎng)軸兩個(gè)端點(diǎn),P1、P2是垂直于A(yíng)1A2的弦的端點(diǎn),則直線(xiàn)A1P1與A2P2交點(diǎn)的軌跡方程為( )
A.
B.
C.
D.
【答案】分析:由已知中A1、A2是橢圓=1的長(zhǎng)軸兩個(gè)端點(diǎn),P1、P2是垂直于A(yíng)1A2的弦的端點(diǎn),則P1、P2的橫坐標(biāo)相等,縱坐標(biāo)相反,故設(shè)p1(x,y),則p2(x,-y),由橢圓的參數(shù)方程,分別求出A1P1的方程和A2P2的方程(含參數(shù)θ),聯(lián)立方程后,消去參數(shù)θ即可得到滿(mǎn)足條件的曲線(xiàn)方程.
解答:解:設(shè)p1(x,y),則p2(x,-y)
p1,p2在橢圓上,
則x=3sinθ,y=2cosθ
則A1P1的方程為
A2P2的方程為
Q(x,y)為A1P1,A2P2的交點(diǎn).聯(lián)立方程①,②得x=cscθ,y=2ctgθ
消去θ可得
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是軌跡方程,橢圓的簡(jiǎn)單性質(zhì),其中根據(jù)橢圓的參數(shù)方程,求出A1P1的方程和A2P2的方程,進(jìn)而求出兩條直線(xiàn)交點(diǎn)的坐標(biāo),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1、A2是橢圓
x2
9
+
y2
4
=1
=1的長(zhǎng)軸兩個(gè)端點(diǎn),P1、P2是垂直于A(yíng)1A2的弦的端點(diǎn),則直線(xiàn)A1P1與A2P2交點(diǎn)的軌跡方程為( 。
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
-
y2
4
=1
D、
y2
9
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1、A2是橢圓+=1(a>b>0)長(zhǎng)軸的兩個(gè)端點(diǎn),P1P2是垂直于x軸的弦,求直線(xiàn)A1P1、A2P2的交點(diǎn)P的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1、A2是橢圓=1的長(zhǎng)軸兩個(gè)端點(diǎn),P1、P2是垂直于A(yíng)1A2的弦的端點(diǎn),則直線(xiàn)A1P1與A2P2交點(diǎn)P的軌跡方程為(    )

A.=1                                B.=1

C.=1                                D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1、A2是橢圓+=1的長(zhǎng)軸的兩個(gè)端點(diǎn),P1、P2是垂直于A(yíng)1A2的弦的端點(diǎn),則直線(xiàn)A1P1與A2P2交點(diǎn)的軌跡方程為

A.+=1                                 B.+=1

C.=1                                 D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1、A2是橢圓=1的長(zhǎng)軸兩個(gè)端點(diǎn),P1P2是垂直于A1A2的弦的端點(diǎn),則直線(xiàn)A1P1A2P2交點(diǎn)的軌跡方程為(    )

A                          B 

C                          D 

查看答案和解析>>

同步練習(xí)冊(cè)答案