函數(shù)f(x)對任意x∈R,都有f(x)+f(1-x)=成立.
(1)求f()和f()+f()(n∈N+)的值;
(2)數(shù)列{an}滿足:an=f(0)+f()+f()+…+f()+f(1),問:數(shù)列{an}是等差數(shù)列嗎?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
定義在實(shí)數(shù)集上的函數(shù)f(x)對任意x,yÎR有f(x+y)+f(x-y)=2f(x)f(y)且f(0)¹0.
(1)求證:f(0)=1;(2)求證:y=f(x)是偶涵數(shù);
(3)若存在常數(shù)c使;①求證對任意xÎR有f(x+c)=-f(x)成立;②試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(1)求證:f(0)=1;(2)求證:y=f(x)是偶涵數(shù);
(3)若存在常數(shù)c使;①求證對任意xÎR有f(x+c)=-f(x)成立;②試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都樹德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022
對于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:
①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;
②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);
③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);
④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);
⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)對任意x,y,都有,且時(shí),f(x)<0,f(1)=-2.
⑴求證:f(x)是奇函數(shù);
⑵試問在時(shí),f(x)是否有最值?如果有求出最值;如果沒有,說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)判斷函數(shù)f(x)的奇偶性.
(2)當(dāng)x∈[-3,3]時(shí),函數(shù)f(x)是否有最值?如果有,求出最值;如果沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com