設(shè){an}是等比數(shù)列,若a1=1,a4=8,則q=    ,數(shù)列{an}的前6項(xiàng)的和S6=   
【答案】分析:由a1=1,a4=8,利用等比數(shù)列的通項(xiàng)公式能求出q的值,再由等比數(shù)列的前n項(xiàng)和公式可求出S6的值.
解答:解:∵a4=a1q3,∴8=q3,∴q=2.

故答案:2,63.
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等比數(shù)列,若a1=1,a4=8,則q=
 
,數(shù)列{an}的前6項(xiàng)的和S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、設(shè){an}是等比數(shù)列,若a5=log28,則a4a6等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等比數(shù)列,公比q=
2
,Sn為{an}的前n項(xiàng)和.記Tn=
17Sn-S2n
an+1
,n∈N*,設(shè)Tn0為數(shù)列{Tn}的最大項(xiàng),則n0=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等比數(shù)列,公比q=2,Sn為{an}的前n項(xiàng)和.記Tn=
4Sn-S2nan+1
,n∈N*.設(shè)T為數(shù)列{Tn}的最大項(xiàng),則正整數(shù)n0=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•洛陽(yáng)二模)設(shè){an}是等比數(shù)列,Sn為{an}的前n項(xiàng)和,且
S10
S5
=
31
32
,則
a5
a2
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案