若函數(shù)f(x)=Asinx(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分圖象如圖所示:
(1)求函數(shù)y=f(x)的解析式;
(2)若方程f(x)=k+1在[0,π]內(nèi)有兩個相異的實數(shù)根,求實數(shù)k的取值范圍.
分析:(1)通過函數(shù)的圖象求出A,T,利用周期公式求出ω,結(jié)合函數(shù)的圖象經(jīng)過(-
π
2
,0
),結(jié)合φ的范圍求出φ,即可得到函數(shù)y=f(x)的解析式;
(2)利用函數(shù)的圖象,方程f(x)=k+1在[0,π]內(nèi)有兩個相異的實數(shù)根,得到圖象的交點個數(shù),求實數(shù)k的取值范圍.
解答:解:(1)由圖象可知A=2,T=4π,所以ω=
T
=
1
2
,函數(shù)的圖象經(jīng)過(-
π
2
,0
),所以0=2sin[
1
2
×(-
π
2
)+φ]
,|φ|<
π
2

所以φ=
π
4
,所以函數(shù)的解析式為:f(x)=2sin(
1
2
x+
π
4
);
(2)若方程f(x)=k+1在[0,π]內(nèi)有兩個相異的實數(shù)根,就是函數(shù)y=f(x)與y=k+1,的圖象在[0,π],內(nèi)有兩個不同的交點,如圖,所以
2
≤k+1<2
即k∈[
2
-1,1)

點評:本題是中檔題,考查三角函數(shù)解析式的求法,學生的視圖能力,計算能力轉(zhuǎn)化思想,數(shù)形結(jié)合的思想,好題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
對不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
s+1
s
)=
t-1
t
;
(3)設(shè)x1=
11
17
,xn+1=f(xn),n=1,2,….問:數(shù)列{
1
xn-1
}是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省惠州一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省惠州一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式對不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案