設(shè)雙曲線
的焦點為F
1、F
2,過F
1作x軸的垂線與該雙曲線相交,其中一個交點為M,則|
|=
試題分析:由雙曲線
知,a=
,b=
,將F
1(-3,0)代入雙曲線方程,得|M F
1|=2
,所以由雙曲線的定義,得|
|="2a+|M" F
1|=4
,故選B.
點評:簡單題,涉及雙曲線的“焦點三角形”問題,往往要利用雙曲線的定義。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:填空題
在平面直角坐標系
中,已知△ABC頂點
和
,頂點B在橢圓
上,則
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知直線l:x=my+1過橢圓
的右焦點F,拋物線:
的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且
,當m變化時,探求λ
1+λ
2的值是否為定值?若是,求出λ
1+λ
2的值,否則,說明理由;(3)接AE、BD,試證明當m變化時,直線AE與BD相交于定點
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的兩焦點是F
1(0,-1),F(xiàn)
2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF
1|-|PF
2|=1,求cos∠F
1PF
2。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
與直線x+2y+3=0垂直,且與拋物線y = x2 相切的直線方程是 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
和
分別是雙曲線
(
,
)的兩個焦點,
和
是以
為圓心,以
為半徑的圓與該雙曲線左支的兩個交點,且
是等邊三角形,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知在平面直角坐標系
中的一個橢圓,它的中心在原點,左焦點為
,右頂點為
,設(shè)點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程;
(3)過原點
的直線交橢圓于點
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,
分別是雙曲線
的左、右焦點,過點
與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點
M,若點
M在以線段
為直徑的圓外,則雙曲線離心率的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖所示,已知橢圓的方程為
,A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=45°,則橢圓的離心率等于( )
查看答案和解析>>