分析 由已知可求sinA,sinB=cosB=$\frac{\sqrt{2}}{2}$,利用兩角和的正弦函數(shù)公式可求sinC的值,由正弦定理可得b的值.
解答 解:∵△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,B=45°,cosA=$\frac{3}{5}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,sinB=cosB=$\frac{\sqrt{2}}{2}$,
∴sinC=sin(A+B)=$\frac{\sqrt{2}}{2}×(\frac{4}{5}+\frac{3}{5})$=$\frac{7\sqrt{2}}{10}$,
∴由正弦定理可得:b=$\frac{csinB}{sinC}$=$\frac{1×\frac{\sqrt{2}}{2}}{\frac{7\sqrt{2}}{10}}$=$\frac{5}{7}$.
故答案為:$\frac{5}{7}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 335 | B. | 336 | C. | 670 | D. | 671 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{2π}{3}$或$\frac{4π}{3}$ | D. | $\frac{3π}{3}$或$\frac{7π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com