(文) 已知橢圓的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.(1)求橢圓C1的方程;(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程; (3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北補習(xí)學(xué)校聯(lián)考文)(14分)已知橢圓的一個焦點,對應(yīng)的準(zhǔn)線方程為,且離心率滿足,,成等比數(shù)列.
(1)求橢圓的方程;
(2)試問是否存在直線,使與橢圓交于不同的兩點、,且線段恰被直線平分?若存在,求出的傾斜角的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年崇文區(qū)期末文)(14分)
已知橢圓的中心在坐標(biāo)原點,左頂點,離心率,為右焦點,過焦點的直線交橢圓于、兩點(不同于點).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)時,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09 年聊城一模文)(14分)
已知橢圓的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切。
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009浙江文)已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸, 直線交軸于點.若,則橢圓的離心率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com