18.原命題為“若a>b,則ac2>bc2”關(guān)于其逆命題,否命題,逆否命題 真假性的判斷依次如下,正確的是( 。
A.真,真,真B.真,真,假C.假,假,真D.假,假,假

分析 分別判斷原命題和逆命題的真假,進(jìn)而根據(jù)互為逆否的兩個(gè)命題真假性相同,得到答案.

解答 解:原命題為“若a>b,則ac2>bc2”在c=0時(shí),不成立,故為假命題,
故其逆否命題也為假命題;
其逆命題為:“若ac2>bc2,則a>b”為真命題,
故其否命題也為真命題,
故選:B

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,不等式的基本性質(zhì)等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,E為AD上一點(diǎn),PE⊥平面ABCD.AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F(xiàn)為PC上一點(diǎn),且CF=2FP.
(Ⅰ)求證:PA∥平面BEF;
(Ⅱ)求三棱錐P-ABF與三棱錐F-EBC的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了估計(jì)某校的一次數(shù)學(xué)考試情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機(jī)抽出60名學(xué)生,其成績(jī)(百分制)均在[40,100)上,將這些成績(jī)分成六段[40,50),[50,60)…[90,100),后得到如圖所示部分頻率分布直方圖.
(1)求抽出的60名學(xué)生中分?jǐn)?shù)在[70,80)內(nèi)的人數(shù);
(2)若規(guī)定成績(jī)不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計(jì)該校優(yōu)秀人數(shù).
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+mx+n有兩個(gè)零點(diǎn)-1與3.
(1)求出函數(shù)f(x)的解析式,并指出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若g(x)=f(|x|)在x1,x2∈[t,t+1]是增函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知過拋物線y2=2px(p>0)的焦點(diǎn),斜率為$2\sqrt{2}$的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),且$|AB|=\frac{9}{2}$.
(1)求該拋物線的方程;
(2)過拋物線上的一個(gè)點(diǎn)M(1,2)作兩條垂直的直線MP,MQ分別交拋物線于P,Q兩點(diǎn),試問:直線PQ是否過定點(diǎn),如果過,請(qǐng)求出來,不過,請(qǐng)說明理由.
(3)求原點(diǎn)O到直線PQ的最大距離為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a>0且a≠1,命題p:“函數(shù)y=logax在(0,+∞)內(nèi)單調(diào)遞減”命題q:“曲線y=x2+(2a-3)x+1與x軸有兩個(gè)不同的交點(diǎn)若命題p且q是假命題,p或q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式$\frac{3x-1}{4-x}$≤0的解集是{x|x≤$\frac{1}{3}$或x>4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x,y∈R,命題“若x+y≥5,則x≥3或y≥2”是真命題(填“真”或“假”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意x∈R,都有f(x-1)=f(x+3).當(dāng)x∈[4,5]時(shí),f(x)=2x+1,設(shè)函數(shù)f(x)在區(qū)間[-2,0]上的反函數(shù)為f-1(x),則f-1(19)的值為( 。
A.-log23B.-2log23C.1-log23D.3-2log23

查看答案和解析>>

同步練習(xí)冊(cè)答案