12.已知函數(shù)f(x)=|log3x|,若函數(shù)y=f(x)-m有兩個不同的零點a,b,則( 。
A.a+b=1B.a+b=3mC.ab=1D.b=am

分析 由已知中函數(shù)f(x)=|log3x|,函數(shù)y=f(x)-m有兩個不同的零點a,b,可得a≠b且f(a)=f(b),則log3a+log3b=0,進而根據(jù)對數(shù)的運算性質,即可得到答案

解答 解:∵函數(shù)y=f(x)-m有兩個不同的零點a,b,∴a≠b且f(a)=f(b),
∵f(x)=|log3x|,
∴l(xiāng)og3a+log3b=0
即log3a+log3b=log3(ab)=0,
∴a•b=1
故選:C.

點評 本題考查的知識點是對數(shù)函數(shù),對數(shù)的運算性質,其中根據(jù)已知判斷出a≠b且f(a)=f(b),是解答本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.在等差數(shù)列{an}中,若ap=4,aq=2且p=4+q,則公差d=( 。
A.1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-12≤0}\end{array}\right.$所表示的平面區(qū)域為D,若直線y=a(x+2)與區(qū)域D有公共點,則a的取值范圍是(0,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出曲線C的直角坐標方程;
(2)已知直線l與x軸的交點為P,與曲線C的交點為A,B,若AB的中點為D,求|PD|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.“-3≤m≤0”是“直線mx-y-2m=0與函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{-{x^2}+16},-4≤x≤0\\ 2x-2,x>0\end{array}\right.$的圖象有兩個交點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C:x2+2y2=8,是否存在斜率為1的直線l,使l被圓C截得的弦AB為直徑的圓經(jīng)過原點,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a,b是兩個正實數(shù).且$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^}$=($\frac{1}{{2}^{a}}$)b,則ab有( 。
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=$\sqrt{-{x}^{2}+2x+3}$的定義域為(  )
A.[-1,3]B.[-3,1]C.(-∞,-3]∪[1,+∞]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若三條直線l1:ax+2y+6=0,l2:x+y-4=0,l3:2x-y+1=0相交于同一點,則實數(shù)a=( 。
A.-12B.-10C.10D.12

查看答案和解析>>

同步練習冊答案