【題目】已知向量 =(2,﹣3), =(﹣5,4), =(1﹣λ,3λ+2).
(1)若△ABC為直角三角形,且∠B為直角,求實數(shù)λ的值;
(2)若點A、B、C能構(gòu)成三角形,求實數(shù)λ應(yīng)滿足的條件.
【答案】
(1)解:因為△ABC是直角三角形,且∠B=90°,
所以 =0,又因為 =(2,﹣3), =(﹣5,4), =(1﹣λ,3λ+2),
∴( )( )=(7,﹣7)(6﹣λ,3λ﹣2)=0
即8﹣4λ=0,解得λ=2.
(2)解:若點A、B、C能構(gòu)成三角形,則A、B、C不共線,
∴向量 與 不共線,即﹣7(3λ﹣2)≠7(6﹣λ),
∴實數(shù)λ應(yīng)滿足條件λ≠﹣2.
【解析】(1)由∠B是直角,得BA⊥BC,即 =0,據(jù)此可列出關(guān)于λ的方程,解之即可;(2)若三點是三角形的三個頂點,則只需三點A、B、C不共線即可,求出共線時λ的范圍,然后取其補集就是所求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有教職工500人,對他們進行年齡狀況和受教育程度的調(diào)查,其結(jié)果如下:
高中 | ? | 本科 | 研究生 | 合計 | |
35歲以下 | 10 | 150 | 50 | 35 | 245 |
35﹣50 | 20 | 100 | 20 | 13 | 153 |
50歲以上 | 30 | 60 | 10 | 2 | 102 |
隨機的抽取一人,求下列事件的概率:
(1)50歲以上具有?苹?qū)?埔陨蠈W(xué)歷;
(2)具有本科學(xué)歷;
(3)不具有研究生學(xué)歷.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)列{an}的前n項和Sn= ,n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2an+(﹣1)nan , 求數(shù)列{bn}的前2n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記關(guān)于x的不等式 的解集為P,不等式|x+2|<3的解集為Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標(biāo)為(c,0),且當(dāng)0<x<c時,恒有f(x)>0.
(1)當(dāng)a=1, 時,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函數(shù)的圖象與坐標(biāo)軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
(4)若不等式m2﹣2km+1+b+ac≥0對所有k∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ].
(1)若| |=| |,求x的值;
(2)設(shè)函數(shù)f(x)= ,求f(x)的最大值及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設(shè)f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數(shù)k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函數(shù)g(x)的值域;
(2)若函數(shù)y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在區(qū)間[ ,π]上為增函數(shù),求實數(shù)ω的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com