已知函數(shù)f (x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).
(Ⅰ)若函數(shù)f (x)在R上單調(diào),求a的值;
(Ⅱ)若函數(shù)f (x)在區(qū)間[0,2]上的最大值是5,求a的取值范圍.
分析:(I)先求函數(shù)的導(dǎo)數(shù),再由函數(shù)f (x)在R上單調(diào)知其導(dǎo)數(shù)恒為非負值,從而方程(x-1)(x-1-a2)=0的根相等,即可求得a的值;
(II)由(I)知函數(shù)f (x)在區(qū)間[0,1]上是增函數(shù),在區(qū)間[1,1+a2]上是減函數(shù),在區(qū)間[1+a2,2]上是增函數(shù),故函數(shù)f (x)在區(qū)間[0,2]上的最大值是f(1),f(2)中的較大者,從而得到一個不等式求得a的取值范圍即可.
解答:解:(Ⅰ)f′(x)=6x
2-6(2+a
2)x+6(1+a
2)
=6(x-1)(x-1-a
2),
因為函數(shù)f(x)在R上單調(diào),
所以1=1+a
2,
即a=0.(6分)
(Ⅱ)因為1≤1+a
2,
所以{f(x)}max={f(1),f(2)}max={3a
2+3,5}max=5,
即3a
2+3≤5,
解此不等式,得
-
≤a≤
,
所以a的取值范圍是-
≤a≤
.(15分)
點評:本題主要考查函數(shù)的單調(diào)性、最值等基本性質(zhì)、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識,同時考查抽象概括能力和運算求解能力.