已知圓C:(θ為參數(shù))和直線θl:(其中t為參數(shù),α為直線l的傾斜角)
(1)當(dāng)時,求圓上的點到直線l的距離的最小值;
(2)當(dāng)直線l與圓C有公共點時,求α的取值范圍.
【答案】分析:(1)圓C、直線l化為直角坐標(biāo)方程,求出圓心到直線的距離,再根據(jù)圓上點到直線的距離最小值一般為圓心到直線的距離減半徑可求出所求.
(2)把直線的參數(shù)方程化為普通方程,把圓的參數(shù)方程化為直角坐標(biāo)方程,根據(jù)圓心到直線的距離小于或等于半徑,求得tanα≥,由此求出傾斜角α的范圍.
解答:解:(1)圓C:(θ為參數(shù))的直角坐標(biāo)方程為(x-1)2+y2=1,
當(dāng)時,直線直線l:的直角坐標(biāo)方程為x+y-3=0
圓心到直線的距離為:=
所以圓上的點到直線的距離的最小值為-1.
(2)∵直線l的參數(shù)方程為l:(t為參數(shù),α為直線l的傾斜角),
消去參數(shù)t化為普通方程為tanα•x-y-2tanα+=0.
圓C化為直角坐標(biāo)方程為(x-1)2+y2=1,
表示以C(1,0)為圓心,以1為半徑的圓.
根據(jù)圓心C到直線的距離d=≤1,
解得tanα≥
再由傾斜角α∈[0,π) 可得,≤α<
故α的取值范圍為[,).
點評:本題主要考查把參數(shù)方程化為普通方程,點到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在圓C上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=2s-7
y=s
(s為參數(shù)),則圓心C到直線l的距離是
8
5
5
8
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

坐標(biāo)系與參數(shù)方程,在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,
π3
)
,半徑為3,點Q在圓周上運動,
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直角坐標(biāo)系的原點與極點O重合,x軸非負(fù)半軸與極軸重合,M為OQ中點,求點M的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石家莊二模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以原點0為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=2acos(θ+
π
4
)(a>0).
(Ⅰ)當(dāng)a=2
2
時,設(shè)OA為圓C的直徑,求點A的直角坐標(biāo);
(Ⅱ)直線l的參數(shù)方程是
x=2t
y=4t
(t為參數(shù)),直線l被圓C截得的弦長為d,若d≥
2
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城三模)選修4-4:坐標(biāo)系與參數(shù)方程已知圓C的極坐標(biāo)方程為ρ=4cos(θ-
π
6
),點M的極坐標(biāo)為(6,
π
6
),直線l過點M,且與圓C相切,求l的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案