20.已知函數(shù)f(x)=(x-2)(ax+b)為偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2-x)>0的解集為{x|x<0或x>4}.

分析 根據(jù)函數(shù)是偶函數(shù),求出a,b關(guān)系,結(jié)合單調(diào)性確定a的符號即可得到結(jié)論.

解答 解:∵f(x)=(x-2)(ax+b)=ax2+(b-2a)x-2b為偶函數(shù),
∴b-2a=0,即b=2a,
則f(x)=(x-2)(ax+2a)=a(x-2)(x+2)=ax2-4a,
∵在(0,+∞)單調(diào)遞增,∴a>0,
則由f(2-x)=a(-x)(4-x)>0得x(x-4)>0,
解得x<0或x>4,
故不等式的解集為{x|x<0或x>4},
故答案為{x|x<0或x>4}.

點(diǎn)評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知sinαcosβ=1,則cos(α+β)的值是(  )
A.0B.1C.-1D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若A=60°,△ABC面積為$\sqrt{3}$,則$\frac{{4{b^2}+4{c^2}-3{a^2}}}{b+c}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)AB是雙曲線Γ的實(shí)軸,點(diǎn)C在Γ上,且∠CAB=$\frac{π}{4}$,若AB=4,BC=$\sqrt{26}$,則雙曲線的焦距是4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)是定義在R上的奇函數(shù),且對任意實(shí)數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時,求f(x)的解析式;
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2017).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等差數(shù)列{an}中,已知a7=-8,a17=-28.
(1)求數(shù)列{an}的通項(xiàng)公式;  
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2x+3.
(1)是否存在實(shí)數(shù)m,使不等式m+f(x)>0對于任意x∈R恒成立?并說明理由;
(2)若存在實(shí)數(shù)x,使不等式m-f(x)>0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知α為第二象限的角,sinα=$\frac{1}{2}$,β為第一象限的角,cosβ=$\frac{3}{5}$. 則tan(2α-β)的值為( 。
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“$?{x_0}∈R,x_0^3-x_0^2+1>0$”的否定是(  )
A.?x∈R,x3-x2+1≤0B.$?{x_0}∈R,x_0^3-x_0^2+1<0$
C.$?{x_0}∈R,x_0^3-x_0^2+1≤0$D.$?x∈R,x_0^3-x_0^2+1>0$

查看答案和解析>>

同步練習(xí)冊答案