若函數(shù)
在
上的導(dǎo)函數(shù)為
,且不等式
恒成立,又常數(shù)
,滿足
,則下列不等式一定成立的是
.
①
;②
;③
;④
.
試題分析:令
,
.
,因為
,所以
,即
在
上是增函數(shù).由
得
,即
,所以
.所以①成立,③不成立;再令
,
.所以
,因為不能確定
是否大于0,所以
單調(diào)性不能確定,即不知道
與
的大小關(guān)系,所以②④不一定成立.因此本題填①.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè)
,試問函數(shù)
在
上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
和
,且
.
(1)求函數(shù)
,
的表達式;
(2)當(dāng)
時,不等式
在
上恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
是常數(shù))在
處的切線方程為
,且
.
(Ⅰ)求常數(shù)
的值;
(Ⅱ)若函數(shù)
(
)在區(qū)間
內(nèi)不是單調(diào)函數(shù),求實數(shù)
的取值范圍;
(Ⅲ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
.
(2)若函數(shù)
在
上是增函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
(1)若
時,求函數(shù)
在點
處的切線方程;
(2)若函數(shù)
在
上是減函數(shù),求實數(shù)
的取值范圍;
(3)令
是否存在實數(shù)
,當(dāng)
是自然對數(shù)的底)時,函數(shù)
的最小值是3,
若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)若
,且
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
方程x3-3x=k有3個不等的實根, 則常數(shù)k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖是函數(shù)
的導(dǎo)函數(shù)
的圖象,對此圖象,有如下結(jié)論:
①在區(qū)間(-2,1)內(nèi)
是增函數(shù);
②在區(qū)間(1,3)內(nèi)
是減函數(shù);
③在
時,
取得極大值;
④在
時,
取得極小值。
其中正確的是
.
查看答案和解析>>