設(shè)m,n∈R,求s=的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2008年廣東地區(qū)數(shù)學(xué)科全國各地模擬試題直線與圓錐曲線大題集 題型:044

設(shè)A(-2,0),B(2,0),M為平面上任一點,若|MA|+|MB|為定值,且cosAMB的最小值為

(1)求M點軌跡C的方程;

(2)過點N(3,0)的直線l與軌跡C及單位圓x2+y2=1自右向左依次交于點P、Q、R、S,若|PQ|=|RS|,則這樣的直線l共有幾條?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省紅色六校2012屆高三第二次聯(lián)考數(shù)學(xué)文科試題 題型:044

在平面直角坐標(biāo)系中,已知焦距為4的橢圓的左、右頂點分別為A、B,橢圓C的右焦點為F,過F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長為

(1)求橢圓C的方程;

(2)設(shè)Q(t,m)是直線x=9上的點,直線QA、QB與橢圓C分別交于點M、N,求證:直線MN必過x軸上的一定點,并求出此定點的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

設(shè)A(-2,0),B(2,0),M為平面上任一點,若|MA|+|MB|為定值,且cosAMB的最小值為-.

(1)求M點軌跡C的方程;(2)過點N(3,0)的直線l與軌跡C及單位圓x2+y2=1自右向左依次交于點P、Q、R、S,若|PQ|=|RS|,則這樣的直線l共有幾條?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知 (x∈R).

(Ⅰ)求函數(shù)的最小值和最小正周期;k*s*5u

(Ⅱ)設(shè)ABC的內(nèi)角A、B、C的對邊分別為a、bc,且cf (C)=0,若向量m=(1,sinA)與向量n=(2,sinB)共線,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案