A. | $f(x)=2sin(2x+\frac{π}{3})$ | B. | $f(x)=2sin(2x-\frac{π}{3})$ | C. | $f(x)=2sin(2x+\frac{π}{6})$ | D. | $f(x)=2sin(2x-\frac{π}{6})$ |
分析 由函數(shù)圖象最高點(diǎn)和最低點(diǎn)縱坐標(biāo)可得振幅A值,相鄰最高和最低點(diǎn)間的橫坐標(biāo)之差為半個(gè)周期,即可求得函數(shù)的周期,進(jìn)而得ω的值,利用點(diǎn)($\frac{5π}{12}$,2)在函數(shù)圖象上,解得:φ=2kπ-$\frac{π}{3}$,k∈Z,結(jié)合范圍|φ|$<\frac{π}{2}$,可得φ的值,從而得解.
解答 解:∵某一個(gè)周期內(nèi)的圖象的最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為$(-\frac{π}{12},-2),(\frac{5π}{12},2)$,
∴A=2,T=2×($\frac{5π}{12}$+$\frac{π}{12}$)=π,
∴ω=$\frac{2π}{T}$=$\frac{2π}{π}$=2,
∴f(x)=2sin(2x+φ),
∵點(diǎn)($\frac{5π}{12}$,2)在函數(shù)圖象上,可得:2sin(2×$\frac{5π}{12}$+φ)=2,sin($\frac{5π}{6}$+φ)=1,解得:φ=2kπ-$\frac{π}{3}$,k∈Z,
∵|φ|$<\frac{π}{2}$,可得φ=-$\frac{π}{3}$.
∴該函數(shù)的解析式為2sin(2x-$\frac{π}{3}$).
故選:B.
點(diǎn)評(píng) 本題主要考察了由y=Asin(ωx+φ)的部分圖象確定其解析式,三角變換公式在三角化簡(jiǎn)和求值中的應(yīng)用,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:9 | B. | 1:27 | C. | 1:3 | D. | 1:3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 502 | B. | 503 | C. | 504 | D. | 505 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2或$-\frac{1}{2}$ | C. | -2 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,1] | B. | [-1,0] | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com