分析:(1)本小題即證明函數(shù)在[
,1]內(nèi)存在唯一的零點,由零點判定定理可得零點所在區(qū)間,利用導數(shù)可判斷函數(shù)的單調(diào)性,從而得零點的唯一性;
(2)只需判斷x
n與x
n+1的大小關系即可,由(1)可知f
n(x)在(0,+∞)上遞增,根據(jù)
fn(xn+1)=-1+xn+1++…+,及
fn+1(xn+1)=-1+xn+1++…++=fn(xn+1)+=0,可判斷f
n(x
n+1)與0=f
n(x
n)的大小關系,再根據(jù)f
n(x)在(0,+∞)上的單調(diào)性可作出x
n與x
n+1的大小比較;
(3)由數(shù)列{x
n}單調(diào)性可知x
n-x
n+p>0,由x
n,x
n+p滿足(1)知,
fn(xn)=-1+xn++…+=0,
fn+p(xn+p)=-1+xn+p++…+++…+=0,兩式相減:并結合x
n+p-x
n<0,以及
xn∈[,1]可表示出x
n-x
n+p,利用不等式進行放縮可證明;
解答:解:(1)
f′n(x)=1+x++…+,
顯然,當x>0時,f'
n(x)>0,
故f
n(x)在(0,+∞)上遞增.
又
fn(1)=-1+1++…+≥0,
fn()=-1+++…+<-1++()2+…+()n=-1+=-()n<0,
故存在唯一的
xn∈[,1],滿足f
n(x
n)=0;
(2)由(1)知f
n(x)在(0,+∞)上遞增,
∵
fn(xn+1)=-1+xn+1++…+,
∴
fn+1(xn+1)=-1+xn+1++…++=fn(xn+1)+=0,
∴
fn(xn+1)=-<0=fn(xn),
由(1)知f
n(x)在(0,+∞)上遞增,
故x
n+1<x
n,即數(shù)列{x
n}單調(diào)遞減.
(3)由(2)知數(shù)列{x
n}單調(diào)遞減,故x
n-x
n+p>0,
而
fn(xn)=-1+xn++…+=0,
fn+p(xn+p)=-1+xn+p++…+++…+=0,
兩式相減:并結合x
n+p-x
n<0,以及
xn∈[,1],得
| xn-xn+p=n | | k=2 | +n+p | | k=n+1 |
| <n+p | | k=n+1 | ≤n+p | | k=n+1 | <n+p | | k=n+1 |
| =n+p | | k=n+1 | [-]=-< |
| |
所以有
|xn-xn+p|<.
點評:本題考查數(shù)列與函數(shù)、不等式的綜合,考查學生綜合運用所學知識分析問題解決問題的能力,本題綜合性強,對能力要求高.