精英家教網 > 高中數學 > 題目詳情

如圖,已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B滿足∠AQP=∠BQP,其中Q點坐標為(-4,0),原點O為PQ的中點.

(1)證明A、P、B三點共線.

(2)當m=2時,是否存在垂直于x軸的直線,使得被以AP為直徑的圓所截得的弦長為定值?若存在,求出的方程;若不存在,請說明理由.

答案:
解析:

  解:(1)設A(),B().

  ∵∠AQP=∠BQP,tan∠AQP=tan∠BQP,

  ∴

  ∴y1y2(y1+y2)=-8m(y1+y2).

  ∵l不垂直于x軸,∴y1y2=-8m.

  ∵O點是PQ的中點,且Q(-4,0),

  ∴P(4,0).

  又kAP,

  ∴kAP=kBP.∴A、B、P共線.

  (2)設存在滿足條件,設其方程為x=n.

  設A(x1,y1),則y12=4x1

  ∵以AP為直徑的圓的圓心C(),

  ∴直線被圓截得的弦長為

  

  ∴當n=3時,弦長為定值

  ∴存在直線x=3滿足要求.


練習冊系列答案
相關習題

科目:高中數學 來源:重慶一中高2006級高二(上)期數學(文科)期末試題 題型:044

如圖,已知不垂直于x軸的動直線l交拋物線y2=2mx(m>0)于A、B兩點,若A、B兩點滿足∠AQP=∠BQP,其中Q(-4,0),原點O為PQ的中點.

(1)求證:A、P、B三點共線;

(2)當m=2時,是否存在垂直于x的直線被以AP為直徑的圓所截得的弦長L為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:《圓錐曲線》2012-2013學年廣東省十三大市高三(上)期末數學試卷匯編(理科)(解析版) 題型:解答題

如圖,已知點M(x,y)是橢圓C:=1上的動點,以M為切點的切線l與直線y=2相交于點P.
(1)過點M且l與垂直的直線為l1,求l1與y軸交點縱坐標的取值范圍;
(2)在y軸上是否存在定點T,使得以PM為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓,則以Q為切點的橢圓的切線方程是:

查看答案和解析>>

科目:高中數學 來源:2013年廣東省高考數學押題預測試卷(理科)(解析版) 題型:解答題

如圖,已知點M(x,y)是橢圓C:=1上的動點,以M為切點的切線l與直線y=2相交于點P.
(1)過點M且l與垂直的直線為l1,求l1與y軸交點縱坐標的取值范圍;
(2)在y軸上是否存在定點T,使得以PM為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓,則以Q為切點的橢圓的切線方程是:

查看答案和解析>>

科目:高中數學 來源:2013年廣東省湛江市高考數學一模試卷(理科)(解析版) 題型:解答題

如圖,已知點M(x,y)是橢圓C:=1上的動點,以M為切點的切線l與直線y=2相交于點P.
(1)過點M且l與垂直的直線為l1,求l1與y軸交點縱坐標的取值范圍;
(2)在y軸上是否存在定點T,使得以PM為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓,則以Q為切點的橢圓的切線方程是:

查看答案和解析>>

同步練習冊答案