若F1,F(xiàn)2是雙曲線與橢圓的共同的左、右焦點(diǎn),點(diǎn)P是兩曲線的一個交點(diǎn),且為等腰三角形,則該雙曲線的漸近線方程是          。

試題分析:先利用雙曲線=1(a>0,b>0)與橢圓=1的共同焦點(diǎn),求得a2+b2=4,再利用點(diǎn)P是兩曲線的一個交點(diǎn),且△PF1F2為等腰三角形,求得交點(diǎn)坐標(biāo),從而可求雙曲線的標(biāo)準(zhǔn)方程,進(jìn)而可求雙曲線的漸近線方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且經(jīng)過點(diǎn). 過它的兩個焦點(diǎn),分別作直線,交橢圓于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的兩個焦點(diǎn)分別為F1,F(xiàn)2,離心率為,且過點(diǎn)(2,).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)M,N,P,Q是橢圓C上的四個不同的點(diǎn),兩條都不和x軸垂直的直線MN和PQ分別過點(diǎn)F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓和雙曲線有相同的焦點(diǎn)是它們的一個交點(diǎn),則的形狀是(   )
A.銳角三角形B.直角三角形
C.鈍角三角形D.隨的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線C與橢圓=1有共同的焦點(diǎn)F1,F2,且離心率互為倒數(shù).若雙曲線右支上一點(diǎn)P到右焦點(diǎn)F2的距離為4,則PF2的中點(diǎn)M到坐標(biāo)原點(diǎn)O的距離等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的中心在原點(diǎn),焦距為4,一條準(zhǔn)線為x=-4,則該橢圓的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與橢圓相交于兩點(diǎn),且線段的中點(diǎn)在直線上,則此橢圓的離心率為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1,F2分別是橢圓Ex2=1(0<b<1)的左、右焦點(diǎn),過F1的直線lE相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若曲線為焦點(diǎn)在軸上的橢圓,則實(shí)數(shù),滿足(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案