分析 (1)利用絕對值不等式的解法,去掉絕對值,求解即可.
(2)利用f(x)min=min{f(-1),f(a)},求解即可.
解答 解:(1)當(dāng)a=3時(shí),x<-1,不等式可化為-3x+1≥6,∴x≤-$\frac{5}{3}$;
-1≤x≤3時(shí),不等式可化為x+5≥6,∴x≥1,∴1≤x≤3;
當(dāng)x>3時(shí),3x-1≥6,∴x≥$\frac{7}{3}$,∴x>3,
綜上所述,不等式的解集為{x|x≤-$\frac{5}{3}$或x≥1};
(2)∵f(x)min=min{f(-1),f(a)},
∴$\left\{\begin{array}{l}{f(-1)=|-1-a|≥4}\\{f(a)=2|a+1|≥4}\end{array}\right.$,∴a≤-5或a≥3.
點(diǎn)評 本題考查絕對值不等式的解法,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-3i | B. | $\sqrt{5}$ | C. | 10 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com