7.直線(xiàn)$\sqrt{3}$x+y+3=0的傾斜角為(  )
A.B.-30°C.350°D.120°

分析 設(shè)直線(xiàn)$\sqrt{3}$x+y+3=0的傾斜角為θ,θ∈[0°,180°).則tanθ=-$\sqrt{3}$,解出即可得出.

解答 解:設(shè)直線(xiàn)$\sqrt{3}$x+y+3=0的傾斜角為θ,θ∈[0°,180°).
則tanθ=-$\sqrt{3}$,∴θ=120°
故選:D.

點(diǎn)評(píng) 本題考查了直線(xiàn)的傾斜角與斜率的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)既是奇函數(shù)又是偶函數(shù)的是(  )
A.$f(x)=x+\frac{1}{x}$B.$f(x)=\frac{1}{x^2}$
C.$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$D.$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將一個(gè)直角三角形繞斜邊所在的直線(xiàn)旋轉(zhuǎn)一周,所得的幾何體包括( 。
A.一個(gè)圓臺(tái)B.一個(gè)圓錐C.一個(gè)圓柱D.兩個(gè)圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知α是第三象限角,sinα=$-\frac{3}{5}$,求$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:
(1)估計(jì)該校男生的人數(shù);
(2)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC的三個(gè)頂點(diǎn)是A(3,0),B(4,5),C(0,7)
(1)求BC邊上的高所在的直線(xiàn)方程(請(qǐng)用直線(xiàn)的一般方程表示解題結(jié)果)
(2)求BC邊上的中線(xiàn)所在的直線(xiàn)方程(請(qǐng)用直線(xiàn)的一般方程表示解題結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)利用“五點(diǎn)法”畫(huà)出函數(shù)$y=2sin(\frac{1}{2}x+\frac{π}{6})$在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.
    x-$\frac{π}{3}$  $\frac{2π}{3}$    $\frac{5π}{3}$$\frac{8π}{3}$  $\frac{11π}{3}$    
  $\frac{1}{2}x+\frac{π}{6}$0              $\frac{π}{2}$                  π            $\frac{3π}{2}$               2π               
    y020-20
(2)說(shuō)明該函數(shù)圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣平移和伸縮變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面區(qū)域D=$\left\{{({x,y})\left|\begin{array}{l}\\ 3x+y≥3\\ x-y≤2\\ x+3y≤3\end{array}\right.}\right\}$,z=3x-2y,若命題“?(x0,y0)∈D,z>m”為假命題,則實(shí)數(shù)m的最小值為( 。
A.$\frac{3}{4}$B.$\frac{7}{4}$C.$\frac{21}{4}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}是首項(xiàng)為1的單調(diào)遞增的等比數(shù)列,且滿(mǎn)足a3,$\frac{5}{3}{a_4},{a_5}$成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若bn=log3an+1(n∈N*),求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案