【題目】已知圓,圓N與圓M關(guān)于直線對稱.

1)求圓N的方程.

2)是否存在過點(diǎn)P的無窮多對互相垂直的直線,使得被圓M截得的弦長與被圓N截得的弦長相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】12)存在,

【解析】

1)求出圓心的對稱點(diǎn)即可得;

2)假設(shè)存在,設(shè),分析直線的性質(zhì),題意說明圓心到相交直線的距離相等,即的距離等于到直線的距離,為此設(shè)直線的方程為,(考慮斜率存在且不為0),由點(diǎn)到直線距離公式得一關(guān)于斜率的恒等式,可求得

1)設(shè),M與圓N關(guān)于直線對稱,,

則直線MN與直線l垂直,MN的中點(diǎn)在直線l上,得,

解得.

2)設(shè)點(diǎn)滿足條件,

假設(shè)直線的斜率均存在且不為0,

不妨設(shè)直線的方程為,

則直線的方程為.

M和圓N的半徑相等,且直線被圓M截得的弦長與直線被圓N截得的弦長相等,

M的圓心到直線的距離和圓N的圓心到直線的距離相等,

整理得,

,即,

的取值有無窮多個,,

解得.

這樣的點(diǎn)只可能是點(diǎn)或點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)同時在處取得極小值,則稱為一對“函數(shù)”.

(1)試判斷是否是一對“函數(shù)”;

(2)若是一對“函數(shù)”.

①求的值;

②當(dāng)時,若對于任意,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個頂點(diǎn)中隨機(jī)選取3個點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.

(1)求概率的值;

(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)射線與圓的交點(diǎn)為,,與直線的交點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點(diǎn)且斜率為的直線與拋物線交于兩點(diǎn)(在第一象限),以為直徑的圓分別與軸相切于兩點(diǎn),則下列結(jié)論正確的是(

A.拋物線的焦點(diǎn)坐標(biāo)為B.

C.為拋物線上的動點(diǎn),,則D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對任意正整數(shù),.

1)求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實(shí)數(shù)及公比q的值,若不存在,請說明理由;

3)求數(shù)列n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點(diǎn),.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,,若,,則稱的“收縮數(shù)列”.其中,分別表示中的最大數(shù)和最小數(shù).已知為無窮數(shù)列,其前項(xiàng)和為,數(shù)列的“收縮數(shù)列”.

(1)若,求的前項(xiàng)和;

(2)證明:的“收縮數(shù)列”仍是;

(3)若,求所有滿足該條件的.

查看答案和解析>>

同步練習(xí)冊答案