19.已知函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間.

分析 (1)求出函數(shù)的導(dǎo)數(shù),利用函數(shù)的極值點(diǎn),列出方程組,求解a,b即可.
(2)利用函數(shù)的極值點(diǎn),結(jié)合導(dǎo)函數(shù)的符號,推出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)由已知函數(shù)f(x)=2x3+3ax2+3bx+8,
可得f′(x)=6x2+6ax+3b
因?yàn)閒(x)在x=1及x=2處取得極值,所以1和2是方程f′(x)=6x2+6ax+3b=0的兩根,
故$\left\{\begin{array}{l}6+6a+3b=0\\ 24+12a+3b=0\end{array}\right.$
解得:a=-3、b=4.
(2)由(1)可得f(x)=2x3-9x2+12x+8,
可得 f′(x)=6x2-18x+12=6(x-1)(x-2)
當(dāng)x<1或x>2時,f′(x)>0,f(x)是增加的;
當(dāng)1<x<2時,f′(x)<0,f(x)是減少的.
所以,f(x)的單調(diào)增區(qū)間為(-∞,1)和(2,+∞),f(x)的單調(diào)減區(qū)間為(1,2).

點(diǎn)評 本題考查導(dǎo)函數(shù)的應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)區(qū)間的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+a|+|x-2|
(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)=$\root{3}{2x+4}$,則f(2)=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+2ax+1-a在區(qū)間[0,1]上的最大值是2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)如果${3^{-5x}}>{({\frac{1}{3}})^{x+6}}$,求x的取值范圍?
(2)如果loga(2x)>loga(-x+9),求x的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時f(x)=3x+m(m為常數(shù)),則m=-1,f(-log35)的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點(diǎn).
(Ⅰ)求證:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)P為圓C:(x-2)2+(y-3)2=4上一動點(diǎn),點(diǎn)A(4,0),且$\overrightarrow{AQ}$=$\frac{1}{3}$$\overrightarrow{AP}$,求動點(diǎn)Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知y=f(x)是定義在R上的偶函數(shù),其對任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,則當(dāng)f(sinx)>f(cosx)時,x的取值范圍( 。
A.(2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈ZB.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈ZD.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

查看答案和解析>>

同步練習(xí)冊答案