一個口袋里裝有2個白球和2個黑球,這4 個球除顏色外完全相同,從中摸出2個球,則1個是白球,1個是黑球的概率是(  )
分析:根據(jù)所有的摸法有
C
2
4
種,而從中摸出2個球,則1個是白球,1個是黑球的模法有 2×2種,由此求得從中摸出2個球,則1個是白球,1個是黑球的概率.
解答:解:所有的摸法有
C
2
4
=6種,而從中摸出2個球,則1個是白球,1個是黑球的模法有 2×2=4種,
∴從中摸出2個球,則1個是白球,1個是黑球的概率是
4
6
=
2
3
,
故選A.
點(diǎn)評:本題考查古典概型及其概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某次抽獎活動中,一個口袋里裝有4個白球和4個黑球,所有球除顏色外無任何不同,每次從中摸出2個球,觀察顏色后放回,若為同色,則中獎.
(1)求僅一次摸球中獎的概率;
(2)求連續(xù)2次摸球,恰有一次不中獎的概率;
(3)記連續(xù)3次摸球中獎的次數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次抽獎活動中,一個口袋里裝有5個白球和5個黑球,所有球除顏色外無任何不同,每次從中摸出2個球,觀察顏色后放回,若為同色,則中獎.
(Ⅰ)求僅一次摸球中獎的概率;
(Ⅱ)求連續(xù)2次摸球,恰有一次不中獎的概率;
(Ⅲ)記連續(xù)3次摸球中獎的次數(shù)為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)在一個口袋里裝有5個白球和3個黑球,這些球除顏色外完全相同,現(xiàn)從中摸出3個球,至少摸到2個黑球的概率等于
2
7
2
7
 (用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋里裝有2個白球和2個黑球,這4 個球除顏色外完全相同,從中摸出2個球,則1個是白球,1個是黑球的概率是                     。

查看答案和解析>>

同步練習(xí)冊答案