函數(shù)f(x)=1n
2-x
2+x
的圖象關于(  )對稱.
A、x軸B、y軸C、原點D、y=x
分析:利用函數(shù)奇偶性的性質判斷函數(shù)的奇偶性即可判斷函數(shù)圖象的特點.
解答:解:要使函數(shù)有意義,則
2-x
2+x
>0

即(x-2)(x+2)<0,
解得-2<x<2,則定義域關于原點對稱.
又f(-x)=ln
2+x
2-x
=-ln
2-x
2+x
=-f(x)
,
∴函數(shù)f(x)是奇函數(shù),圖象關于原點對稱,
故選:C.
點評:本題主要考查函數(shù)圖象的判斷,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
+ln
x
1-x

(Ⅰ)求證:存在定點M,使得函數(shù)f(x)圖象上任意一點P關于M點對稱的點Q也在函數(shù)f(x)的圖象上,并求出點M的坐標;
(Ⅱ)定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011;
(Ⅲ)對于(Ⅱ)中的Sn,求證:對于任意n∈N*都有lnSn+2-lnSn+1
1
n2
-
1
n3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[0,1],函數(shù)f(x)=x2-ln(x+
1
2
)
,g(x)=x3-3a2x-4a.
(1)求f(x)的單調(diào)區(qū)間和值域;
(2)設a≤-1,若?x1∈[0,1],總?x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍;
(3)對于任意的正整數(shù)n,證明ln(
1
n
+
1
2
)>
1
n2
-
2
n
-1.(注:[ln(x+
1
2
)]/=
1
x+
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
+ln
x
1-x

(Ⅰ)求證:存在定點M,使得函數(shù)f(x)圖象上任意一點P關于M點對稱的點Q也在函數(shù)f(x)的圖象上,并求出點M的坐標;
(Ⅱ)定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2012;
(Ⅲ)對于(Ⅱ)中的Sn,求證:對于任意n∈N*都有lnSn+2-lnSn+1
1
n2
-
1
n3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=ln(1+x)-p
x

(1)若函數(shù)f(x)在定義域內(nèi)為減函數(shù),求實數(shù)p的取值范圍;
(2)如果數(shù)列{an}滿足a1=3,an+1=[1+
1
n2(n+1)2
]an+
1
4n
,試證明:當n≥2時,4≤an<4e
3
4

查看答案和解析>>

同步練習冊答案