從2、3、5、7這四個質(zhì)數(shù)中任取兩個相乘,可以得到不相等的積的個數(shù)是( 。
A、4B、5C、6D、8
考點(diǎn):組合及組合數(shù)公式
專題:計算題
分析:根據(jù)題意,由組合數(shù)計算從2、3、5、7四個數(shù)中任取兩個的情況數(shù)目,進(jìn)而分析可知其中沒有重復(fù)的情況,即可得答案,
解答: 解:從2、3、5、7四個數(shù)中任取兩個,有C42=6種情況,
又由2、3、5、7都是質(zhì)數(shù),則其兩兩相乘,積均不相等,
故可以得到不相等的積有6個;
故選:C.
點(diǎn)評:本題考查組合數(shù)的應(yīng)用,注意這4個數(shù)都是質(zhì)數(shù),其兩兩相乘,積均不相等即沒有重復(fù)的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
)
,x∈R.
(1)求f(x)的最小正周期T;
(2)求f(0)的值;
(3)設(shè)α是第一象限角,且f(α+
π
3
)=
3
5
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ角的頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,終邊經(jīng)過點(diǎn)(3,-4),sin(2θ+
π
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:x+ay-1=0與l2:4x-2y+3=0垂直,則二項式(ax2-
1
x
5展開式中x的系數(shù)為( 。
A、-40B、-10
C、10D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}滿足an>0,n∈N+,且a3a2n-3=22n(n≥2),則當(dāng)n≥1時,log2a1+log2a2+…+log2a2n-1=( 。
A、n(2n-1)
B、(n+1)2
C、n2
D、(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足
x≥2
x-2y+4≥0
2x-y-4≤0
,若z=kx+y的最大值為13,則實(shí)數(shù)k=( 。
A、2
B、
13
2
C、
9
4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈[-1,2],求函數(shù)y=-3x+1+9x-1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦為F,右頂點(diǎn)為A,上頂點(diǎn)為B,O為坐標(biāo)原點(diǎn),M為橢圓上任意一點(diǎn),過F,B,A三點(diǎn)的圓的圓心為(p,q).
(1)當(dāng)p+q≤0時,求橢圓的離心率的取值范圍;
(2)若D(b+1,0),在(1)的條件下,當(dāng)橢圓的離心率最小時,(
MF
+
OD
).
MO
的最小值為
7
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,右焦點(diǎn)F2到直線l1:3x+4y=0的距離為
3
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓右焦點(diǎn)F2斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證:k•k′為定值.

查看答案和解析>>

同步練習(xí)冊答案