設(shè),其中當(dāng)為偶數(shù)時,;當(dāng)為奇數(shù)時,

(1)證明:當(dāng),時,;

(2)記,求的值.

 

(1)詳見解析,(2).

【解析】

試題分析:(1)利用組合數(shù)性質(zhì)進行化簡.根據(jù)奇偶性,對進行分類討論,這不增加難度,僅是便于表示. ,規(guī)律清晰,易于歸納(2)利用組合數(shù)性質(zhì)進行化簡.

=

再根據(jù)得周期,從而,

試題解析:解:(1)當(dāng)為奇數(shù)時,為偶數(shù),為偶數(shù),

,

=

∴當(dāng)為奇數(shù)時,成立 5分

同理可證,當(dāng)為偶數(shù)時, 也成立. 6分

(2)由,得

=

=

=. 9分

又由,得

所以,. 10分

考點:組合數(shù)性質(zhì)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測試(一)數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)的所有零點之和為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)

(1)求的最小正周期和值域;

(2)在銳角△中,角的對邊分別為,若,求

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研二數(shù)學(xué)試卷(解析版) 題型:填空題

已知平面內(nèi)的四點O,A,B,C滿足,,則 = .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研二數(shù)學(xué)試卷(解析版) 題型:填空題

”是“函數(shù)的圖象關(guān)于y軸對稱”的

條件.(在“充分必要”、“充分不必要”、“必要不充分”、

“既不充分也不必要”中選一個合適的填空)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,⊙為四邊形的外接圓,且,延長線上一點,直線與圓相切.

 

求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)理科數(shù)學(xué)試卷(解析版) 題型:填空題

在平面直角坐標(biāo)系中,已知點在圓內(nèi),動直線過點且交圓兩點,若△ABC的面積的最大值為,則實數(shù)的取值范圍為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關(guān)于θ的函數(shù)表達式;

(2)求的值,使體積V最大;

(3)問當(dāng)木梁的體積V最大時,其表面積S是否也最大?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省鹽城市高三第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知復(fù)數(shù)(其中i為虛數(shù)單位),則= .

 

查看答案和解析>>

同步練習(xí)冊答案