在正方體ABCD-A1B1C1D1中,M為BB1的中點,AC、BD交于點O,則D1O與平面AMC成的角為
 
度.
分析:由已知中正方體ABCD-A1B1C1D1中,M為BB1的中點,AC、BD交于點O,根據(jù)正方體的幾何特征可得∠D1OM即為D1O與平面AMC成的角,解三角形D1OM,即可得到答案.
解答:精英家教網(wǎng)解:先設正方體的棱長為a
所以OD=
2
2
a

則∠D1OM即為D1O與平面AMC成的角.
由勾股定理得,OD1=
6
2
a,OM=
3
2
a,D1M=
3
2
a,
由余弦定理得,cos∠D1OM=
OD
2
1
+OM2-D1M2
2OD1•OM
=0
所以∠D1OM=90°
故答案為:90
點評:本題考查的知識點是直線與平面所成的角,其中根據(jù)D1O垂直平面AMC得到直線與平面垂直即線面夾角為90°是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號是
 

查看答案和解析>>

同步練習冊答案