19.在正六棱柱中,不同在任何側(cè)面而且不同在任何底面的兩頂點(diǎn)的連線稱為對(duì)角線,那么一個(gè)正六棱柱對(duì)角線的條數(shù)共有( 。
A.24B.18C.20D.32

分析 正六棱柱的空間對(duì)角線,投影就是正六邊形的對(duì)角線.正六棱柱的空間對(duì)角線有兩條件對(duì)角線投影相同.正六棱柱的空間對(duì)角線就是正六邊形的對(duì)角線2倍.

解答 解:∵空間對(duì)角線的投影就是正六邊形的對(duì)角線2倍.
多邊形的對(duì)角線$\frac{(n-3)n}{2}$.
那么多邊形空間對(duì)角線的投影就是多邊形的對(duì)角線2倍.即公式是n(n-3)
所以:正六棱柱的對(duì)角線是:6×(6-3)=18
故選:B

點(diǎn)評(píng) 本題考查了空間對(duì)角線的條數(shù)問題,記住公式:n(n-3)即可.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=2sinx+3cosx的極大值為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$f(x)={2^{a{x^2}-bx+1}}$,若a是從區(qū)間(0,2)任取的一個(gè)數(shù),b是從區(qū)間(0,2)任取的一個(gè)數(shù),則此函數(shù)在[1,+∞)遞增的概率( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$sin2x,x∈R,則函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos(-420°)的值等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù),在區(qū)間$(\frac{π}{2},π)$上是增函數(shù)的是( 。
A.y=cosxB.y=|sinx|C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.含有參數(shù)形式的復(fù)數(shù)如:3m+9+(m2+5m+6)i,(m∈R)何時(shí)表示實(shí)數(shù)、虛數(shù)、純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若sinθ>0且sin2θ>0,則角θ的終邊所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若非零不共線向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow$|,則下列結(jié)論正確的個(gè)數(shù)是|.( 。
①向量$\overrightarrow{a}$,$\overrightarrow$的夾角恒為銳角  ②2|$\overrightarrow$|2>$\overrightarrow{a}$•$\overrightarrow$  ③|2$\overrightarrow$|>|$\overrightarrow{a}$-2$\overrightarrow$|④|2$\overrightarrow{a}$|>|2$\overrightarrow{a}$-$\overrightarrow$|.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案