若集合M={x||x|<2},N={x|y=lg(x-1)},則M∩N=________.

{x|1<x<2}
分析:由題設(shè)條件先求出集合M和N,再由交集的定義求出M∩N.
解答:∵M={x||x|<2}={x|-2<x<2},
N={x|y=lg(x-1)}={x|x-1>0}={x|x>1},
∴M∩N={x|1<x<2}.
故答案為:{x|1<x<2}.
點評:本題考查交集及其運算,是基礎(chǔ)題.解題時要認真審題,注意含絕對值的不等式和對數(shù)的定義域的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若集合M={x|x-2>0},N={x|log2(x-1)<1},則M∩N=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={x|x-2>0},N={x|log2(x-2)<1},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省五校協(xié)作體高三摸底考試文科數(shù)學試卷(解析版) 題型:選擇題

若集合M = {x R | 2 x ≥ 4},N = {xR | x 2 - 4 x + 3 ≥ 0},則MN =(    )

A. {x | x≤ 4}                           B. {x | x≤ 1}

C.{x | x≥ 2}                            D. {x | x≥ 3}

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若集合M = {x R | 2 x ≥ 4},N = {xR | x 2 - 4 x + 3 ≥ 0},則MN =


  1. A.
    {x | x≤ 4}
  2. B.
    {x | x≤ 1}
  3. C.
    {x | x≥ 2}
  4. D.
    {x | x≥ 3}

查看答案和解析>>

科目:高中數(shù)學 來源:2010年貴州省黔西南州興仁縣下山中學高考數(shù)學二模試卷(文理合卷)(解析版) 題型:選擇題

若集合M={x||x|<1},N={x|x2≤x},則M∩N=( )
A.{x|-1<x<1}
B.{x|0<x<1}
C.{x|-1<x<0}
D.{x|0≤x<1}

查看答案和解析>>

同步練習冊答案