已知數(shù)列{an}成等差數(shù)列,若a3+a4+a5=12,則S7=
28
28
分析:由已知結(jié)合等差數(shù)列的性質(zhì)可求a4,然后代入等差數(shù)列的求和公式s7=
7(a1+a7)
2
=7a4可求
解答:解:∵a3+a4+a5=12,
由等差數(shù)列的性質(zhì)可知,a3+a4+a5=3a4=12,
∴a4=4
s7=
7(a1+a7)
2
=7a4=28
故答案為:28
點(diǎn)評:本題主要考查了等差數(shù)列的性質(zhì)及等差數(shù)列的求和公式的應(yīng)用,解題的關(guān)鍵是公式的靈活應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2013的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}分別為等比,等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn,且S3,S2,S4成等差數(shù)列,a1+a2+a3=3,數(shù)列{bn}中,b1=a1,b6=a5
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{anbn}的前n項(xiàng)和為Tn,求滿足不等式Tn+2014≤0的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2013的值為(  )
A.4023B.4025C.4027D.4029

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2013的值為( 。
A.4023B.4025C.4027D.4029

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷02(文科)(解析版) 題型:選擇題

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2013的值為( )
A.4023
B.4025
C.4027
D.4029

查看答案和解析>>

同步練習(xí)冊答案